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1 INTRODUCTION

Relevance of the Research

Premature ventricular contractions (PVCs) and atrial �brillation (AF) are
the most commonly encountered cardiac disorder in humans, a�ecting up to 4%
and 2% of the general population, respectively (Kostis et al., 1981 [1]; January
et al., 2014 [2]).

PVCs are initiated by the secondary pacemakers � the ectopic foci, located
in the ventricles, causing them to contract prematurely. It is well known that
PVCs may occur even in healthy hearts with no signi�cant impact on the overall
well-being. Accordingly, early studies suggested that PVCs could be considered
as benign in the absence of structural heart disease (Kennedy et al., 1985 [3]).
However, more recent studies have denied the benignity of PVCs by linking them
to various health abnormalities. For example, the increased frequency of PVCs
has been associated with heart failure and sudden death if a heart disease was
suspected (Ng, 2006 [4]; Ephrem et al., 2013 [5]; Ataklte et al., 2013 [6]). PVCs
have also been found to be a trigger of other serious heart arrhythmias such as
ventricular �brillation (Santoro et al., 2014 [7]) and atrial �brillation (Watanabe
et al., 2006 [8]; Agarwal et al., 2010 [9]).

Several studies have shown (e.g., (Hirose et al., 2010 [10])) that PVCs have a
potential to be used as a predictor of sudden cardiac death in men even without
a recognized heart disease. This particularly applies if frequent PVCs occur
during physical exercise (Jouven et al., 2000 [11]; Ng, 2006 [4]), and especially
during the phase of recovery (Frolkis et al., 2003 [12]; Ng, 2006 [4]). Since
PVCs usually cause ine�ciency in blood circulation, notably in cases of multiple
frequent PVCs, i.e., bigeminy (every 2nd beat is premature) and trigeminy (every
3rd beat is premature), such a condition may lead to dizziness or a temporal loss
of consciousness (Zaret et al., 1992 [13]; Reed et al., 2006 [14]; Garcia-Touchard et
al., 2007 [15]). In addition, PVCs are common in patients with a chronic kidney
disease (Shamseddin et al., 2011 [16]), by being a consequence of electrolyte
shifts (e.g., low blood potassium and calcium), resulting in electrolyte imbalance
during such procedures as hemodialysis.

AF has emerged as a world-wide cardiovascular epidemic, a�ecting nearly 3%
of adults aged ¡20 years (Haim et al., 2015 [17]). Considerably greater AF preva-
lence is found in older individuals and in patients with serious health conditions
such as hypertension, heart failure and coronary artery disease. Due to the fast
ageing of the society, the prevalence is expected to increase up to 3-fold in the
upcoming decades (Colilla et al., 2013 [18]). AF is often asymptomatic; it covers
from 55% to 80% of all AF cases (Healey et al., 2012 [19]; Lowres et al., 2013 [20];
Lip et al., 2014 [21]), thus timely diagnosis of subclinical (silent) AF is crucial in
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order to prevent severe outcomes such as stroke (Kishore et al., 2014 [22]) and
death (Benjamin et al., 1998 [23]).

In most cases, PVCs and AF have a distinctive morphology and thus are
relatively easily detectable in an electrocardiogram (ECG). Hence, PVC and AF
characterizing properties, such as the frequency and morphology, are usually
evaluated by using conventional Holter monitors. Although various technologies
have been developed for arrhythmia detection, for many years, only ECG-based
Holter monitors and event recorders have routinely been used in the clinical
practice to detect PVCs and AF in high-risk patients. Since AF is often asymp-
tomatic (Lowres et al., 2013 [20]; Lip et al., 2014 [21]), patient-friendly screening
technologies are highly desirable so that AF can be detected at an early stage.
Advancements in the medical technology allow considering alternative strategies.
For example, it has been shown that daily intermittent screening by using hand-
held ECG recorders results in considerably higher arrhythmia detection rates
compared to the standard 24 hour Holter monitoring (Lowres et al., 2016 [24];
Kirchhof, 2017 [25]). Even though such emerging hand-held ECG recorders are
particularly easy to use, a 10-s ECG is not enough to detect paroxysmal AF.
Moreover, the electrodes used to record ECG are attached to the patient's chest,
which results in discomfort, a limited freedom of movement, and also in an in-
creased feeling of unhealthiness, especially after wearing the device for several
days (Rosero et al., 2013 [26]). Therefore, it is essential to develop unobtrusive
screening technologies capable of monitoring longer periods of time, i.e., days
and weeks, resulting in a larger number of identi�ed AF cases (Charitos et al.,
2012 [27]).

Currently, implantable devices are the only available technologies providing
a convenient way for continuous AF monitoring. However, implantable devices
are invasive and costly, therefore, they are not suitable for mass AF screening.
Recently, photoplethysmography has been considered as an alternative approach
to detect AF (Lee et al., 2013 [28]; McManus et al., 2016 [29]; Chan et al., 2016
[30]; Freedman, 2016 [31]). A smartphone camera-based application allows to
acquire photoplehysmogram (PPG) waveform which re�ects the blood volume
changes in a �nger � thus the pulse sequence can be used for detecting AF-caused
irregular pulse. While smartphone camera-based AF detector o�ers a fast way
to check for AF, such an approach is inherently not suitable for continuous
monitoring.

With an increasing number of commercially available wristwatch or bracelet-
type devices capable of acquiring PPG, and thus by default the pulse rate, it
opens up the opportunity to screen for PVCs and AF for an unlimited period
of time in a cost-e�ective and unobtrusive way. Although no guidelines cur-
rently exist on the clinical interpretation of the PPG signal, and an ECG should
inevitably be recorded to con�rm the PVC and AF diagnosis, such PPG-based
screening is denoted by the potential to be a valuable tool of selecting individuals
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from a larger population for prolonged ECG monitoring.

Scienti�c-Technological Problem

This doctoral thesis covers a scienti�c-technological problem of clinical rel-
evance whether the most common cardiac arrhythmias, such as the premature
ventricular contractions and atrial �brillation, could be reliably detected by us-
ing solely the photoplethysmogram signals? In order to address the problem
of unobtrusive and reliable arrhythmia monitoring and detection, the selection
of alternative signals, features and noise-related issues, such as the problem of
frequent false alarms, has to be solved.

Working Hypothesis

A hypothesis is formulated that not only premature ventricular contractions
but also atrial �brillation could be reliably detected by analyzing the features
extracted from signals serving as an alternative to the electrocardiogram, e.g.,
photoplethysmogram signals, with an addition of automatic signal quality veri�-
cation. The hypothesis is veri�ed by the comparison of the obtained results with
those provided in the scienti�c literature by using both clinical and simulated
datasets.

Research Object

The research is based on the development and investigation of the algo-
rithms for automatic detection of premature ventricular contractions and atrial
�brillation in photoplethysmogram signals.

The Aim of the Research

The aim of this doctoral thesis is to develop and investigate photoplethys-
mogram signal modeling and processing methods for noninvasive long-term mon-
itoring of cardiac arrhythmia.

The Objectives of the Research

1. To critically analyze the available scholarly literature in the �elds of heart
arrhythmia and monitoring methods, on the genesis of photoplethysmo-
gram signals and on the availability of biomedical signal databases recorded
during arrhythmias.

2. To develop and investigate a photoplethysmogram model capable of sim-
ulating various arrhythmias including premature ventricular contractions
and atrial �brillation.
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3. To develop and investigate a photoplethysmogram-based method for the
detection of premature ventricular contractions.

4. To develop and investigate a photoplethysmogram-based method for the
detection of atrial �brillation.

Scienti�c Novelty

In this doctoral thesis, a phenomenological photoplethysmogram model,
capable of simulating PPG signals during various cardiac events, starting from
a normal sinus rhythm and ending with premature contractions and atrial �b-
rillation is proposed. PPG signals are generated by applying only RR interval
series as an input to the model obtained either from ECG signals or by using
RR interval simulators. The model also makes use of di�erent PPG pulse types
to account for the age and the vascular condition. The described qualities make
this model one of a kind and, therefore, suitable for the development and the
assessment of PPG-based arrhythmia detection algorithms.

High performance, real-time capable algorithms, one for PVC and the other
for AF detection have been developed. Both algorithms rely on the features
extracted solely from the PPG signals. Temporal, amplitude and frequency
domain features are employed in order to distinguish the arrhythmia of interest
from other types of arrhythmias and noises. The algorithms have been developed
while having in mind their application in wearable systems. Currently, there are
no reliable solutions for long-term PPG-based arrhythmia detection described
in the scienti�c literature. Therefore, ambulatory application of the proposed
algorithms would enable an unobtrusive, cost-e�ective and reliable solution for
long-term screening of PVCs and AF.

The PVC detection algorithm relies on three subsequent intervals describ-
ing a single beat, the frequency domain features, and the artifact detection. The
classi�cation of heart beats into premature and normal is accomplished by the
arti�cial neural network. The extracted features are normalized according to
the heart rate of a normal sinus rhythm, and determined by employing a fre-
quency domain-based estimator. Artifact-corrupted PPG segments are detected
by the artifact detector and skipped before beat classi�cation, thus reducing
false alarms in a low signal to noise ratio environment.

The AF detection algorithm combines the analysis of the time intervals
between successive heartbeats and the PPG signal quality assessment. AF de-
tection relies on the improved, modi�ed and PPG-optimized low-complexity al-
gorithm (Petr
enas et al., 2015 [32]). Approaches for minimizing the in�uence of
other types of arrhythmia on the speci�city of the algorithm, i.e., ectopic beats,
bigeminy and sinus arrhythmia, were employed. Signal quality assessment was
performed by comparing the extracted PPG pulses with a prede�ned template,
which adapts to the morphology of a speci�c PPG signal. The output of the
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detector is modi�ed according to the quality of the PPG signal providing a reli-
able performance in terms of high AF detection accuracy in quality signals and
high speci�city even at low signal to noise ratios, i.e., during motion-induced
artifacts, thus minimizing false alarms.

Practical Signi�cance

1. The developed solutions for ambulatory monitoring of PVCs and AF can
be used in the following clinical applications:

(a) Due to the high resemblance to the real photoplethysmogram signals,
the developed photoplethysmogram model could be employed in the
development and assessment of the PPG-based arrhythmia detection
methods and in signal denoising.

(b) A photoplethysmogram-based detector of premature ventricular con-
tractions can be used for reliable and unobtrusive ambulatory long-
term screening or applied in real-time calculation of premature ven-
tricular beats, e.g., during hemodialysis procedures.

(c) A method for the detection of atrial �brillation using photoplethys-
mogram signals has a potential to be used for reliable, cost-e�ective
ambulatory long-term screening of AF in patients suspected of having
brief and rare episodes of AF or in patients after myocardial infarc-
tions or ischemic strokes.

2. The methods provided in this thesis have been developed and used in
support of the following projects:

(a) "Intellectual wearable sensors system for human wellness monitoring
� iMON" under the European Social Fund (No. VP1-3.1-SMM-10-V-
02-004), 2013-2015.

(b) "Personalized patient empowerment and shared decision support for
cardiorenal disease and comorbidities � CARRE" funded by the Euro-
pean Commission Framework Programme 7 (No. 611140), 2013-2016.

(c) "Automatic algorithms for atrial �brillation risk prediction after acute
myocardial infarction � AFAMI" supported by the Research Council
of Lithuania (No. MIP088/15), 2015-2017.

Approval of the results

The doctoral thesis resulted in two scienti�c papers published in inter-
national scienti�c journals included in the Thomson Reuters Web of Science
database, while, in total, the results have been published in 11 scienti�c pa-
pers. The essential results have been presented in 6 conferences, including
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the worldwide-recognized IEEE Biomedical Circuits and Systems Conference
(BioCAS) 2014, and the 44th conference of Computing in Cardiology 2017
(CinC2017). The research has been positively assessed both internationally and
domestically: the BioCAS 2014 paper has been selected as one of the top 20
contributions to the conference and invited for having the extended version pub-
lished in the Special Issue of the IEEE Transactions on Biomedical Circuits and
Systems journal, received the 1st place award for the presentation at the section
of "Signals and Modeling" at the conference "Science for Health 2014" (Lithua-
nian University of Health Sciences) as well as the prize for the most attractive
project for business (with coauthors) at the Young Scientists Exhibition "KTU
Technorama 2015" (Kaunas University of Technology).

The statements presented for defence

1. A photoplethysmogram model for simulating various arrhythmias, includ-
ing premature contractions and atrial �brillation, can generate a PPG
signal by using the data extracted from ECG signals. The photoplethys-
mogram model can be used for the development and assessment of the
PPG-based arrhythmia detection methods.

2. Premature ventricular contractions can be reliably detected by using rhythm
and amplitude-based features, extracted from PPG signals, in combination
with artifact detection and arti�cial neural network-based decision logic.

3. A combination of an ECG-derived and modi�ed rhythm-based atrial �b-
rillation detector and PPG signal quality assessment provides a reliable
approach for the detection of atrial �brillation by relaying solely on the
PPG signal analysis both during screening and long-term monitoring.

Structure of the Doctoral Thesis

The thesis is organized as follows: Chapters 2 and Chapter 3 are designated
for the critical analysis of the relevant scienti�c literature with respect to the
clinical signi�cance and the available technologies for the detection of cardiac ar-
rhythmia, namely the premature ventricular contractions and atrial �brillation.
Chapter 4 presents the proposed methods for the modeling of photoplethysmo-
gram, capable of simulating arrhythmia, PPG-based algorithm of the detection
of PVCs, as well as PPG-based algorithm of the detection of AF. Chapter 5
describes the data used for the performance evaluation and presents the results
obtained for each of the proposed methods. The doctoral thesis is �nished with
general conclusions in Chapter 6. The thesis consists of 131 pages, 54 �gures,
and 15 tables. It features a list of references containing 176 positions.
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2 CLINICAL SIGNIFICANCE OF PREMATURE VENTRICULAR

CONTRACTIONS AND ATRIAL FIBRILLATION

2.1 Medical Background

2.1.1 Introduction to Premature Ventricular Contractions and Atrial Fibrilla-
tion

Anatomy and hemodynamics of the heart. The heart is a muscular organ that
pumps blood throughout the body via the circulatory system thus supplying the
body with oxygen and nutritious materials. Figure 2.1 shows the structure and
the main parts of the heart. The heart consists of four chambers, namely, the
upper two chambers are the right and left atria, whereas the lower chambers are
the right and left ventricles. The blood returning to the heart from the body
contain low levels of oxygen and high levels of carbon dioxide. This blood �ows
into the right atrium and then down into the adjacent right ventricle. After the
right ventricle has �lled, contraction of the right atrium pumps additional blood
into the right ventricle. The right ventricle then contracts and pumps the blood
to the lungs where the blood takes up oxygen and gives o� carbon dioxide. The
blood subsequently �ows from the lungs trough the pulmonary veins to the left
atrium, and then down into the adjacent left ventricle. The contraction of the
left atrium pumps additional blood into the left ventricle. The left ventricle then
contracts and pumps the blood to the aorta and then to the rest of the body via
the vascular system. The heartbeat (pulse) is caused by the contraction of the
ventricles. The most important factor is the heart rate. As the rate increases,
more blood is pumped. The heart pumps more blood with each beat when
the atria contract and �ll the ventricles with additional blood just before the
ventricles contract.

The electrical system of the heart. The electrical system of the heart controls the
timing of each contraction. This system consists of the sinoatrial (SA) node, the
atrioventruclar (AV) node, the bundle of His, Purkinje �bers and special tissues
in the atria and the ventricles which conduct the current. The electrical discharge
in the heart causes the muscle of the atria and, consequently, the ventricles to
contract and pump blood. During normal conditions, this system maintains a
steady heart rate (the number of contractions per minute) in a range of 60�100
beats per minute at rest and increases the hear rate to adapt the oxygen deliv-
ery during physical activity, stress, or excitement, while lowering the heart rate
during low activity and sleep. In a healthy normal heart, the contraction rate of
the atria is the same as that of ventricles. The normal synchronized contraction
of atria and ventricles is de�ned as the normal sinus rhythm. However, due to
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Fig. 2.1. Structure of the heart.

certain conditions or pathologies, either the atria or the ventricles � or both �
may contract abnormally in an unsynchronized manner. Specialized heart cells
in SA and AV nodes, His, Purkinje, etc., may operate autonomously; therefore,
any suppression or enhancement of their activities may lead to abnormal contrac-
tions (Mangoni et al., 2008 [33]). Normally, the SA node is the fastest in terms of
initiating electrical impulses, while other nodes are slower thus maintaining the
normal electrical operation of the heart. The rate at which the normal electrical
impulses are initiated depends on the maximal diastolic potential, the action
potential threshold, and on the rate of the pacemaker potential. Changes in any
of these factors may e�ect the rate of the electrical impulse initiation (Issa et al.,
2012 [34]). Therefore, abnormal contractions are initiated by secondary pace-
makers located in the atria and ventricles (de�ned as ectopic foci) which override
the activity of the SA node. Such abnormal heart contractions are de�ned as
arrhythmias of which the most common are premature ventricular contractions
and atrial �brillation. Figure 2.2 demonstrates the electrical activity of the heart
during the normal sinus rhythm, premature contractions and atrial �brillations.

Normal sinus rhythm. During normal sinus rhythm (SR), the electrical impulse
is discharged in a group of special conducting cells at the upper part of the
heart which are de�ned as the SA node. This impulse then propagates down
through the heart, triggering the �rst of two atria, the AV node and then both
ventricles through the bundle of His. In a healthy heart, the impulse propagates
through the heart rapidly, allowing all the chambers to contract in a smooth,
coordinated manner. The sequence of electrical and mechanical events during
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Fig. 2.2. Heart and its electrical activity during: (a) normal sinus rhythm, (b) atrial
and ventricular premature beats (PBs), and (c) atrial �brillation.

the normal cardiac cycle is as follows:

1. The SA node (the primary pacemaker) initiates an electrical impulse.

2. The upper heart chambers (atria) contract.

3. The AV node transmits an impulse into the ventricles.

4. The lower heart chambers (ventricles) contract and pump blood.

5. The SA node transmits another signal to the atria to contract thus starting
a new cycle.

Premature ventricular contractions. Premature ventricular contractions (PVCs)
are early contractions of the hearts' ventricles, which may occur due to various
conditions both in structurally normal and abnormal hearts. In contrast to the
normal sinus rhythm, during the PVCs, the electrical impulse is initiated by the
secondary pacemakers located in the ventricles and are de�ned as the ectopic
foci. PVCs occur before the impulses are initiated in the SA thus overriding
its operation and normal sinus rhythm contraction. Since an electrical impulse
occurs in ventricles, the resulting QRS complex is of high voltage and of abnormal
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morphology. The sequence of electrical and mechanical events during the PVC
is as follows:

1. The ectopic focus (the secondary pacemaker) initiates an electrical impulse
in the ventricles.

2. The lower heart chambers (ventricles) contract earlier than normal, while
lower chambers (atria) do not, which causes a lower amount of blood to
be pumped.

3. A pause is followed after the PVC, allowing ventricles to �ll with more
blood.

4. The following cycle might be initiated by the SA node.

PVCs maybe classi�ed according to the frequency of occurrence and their
relationship to normal beats. Frequent PVCs are considered if the occurrence is
¥10 PVCs per hour or ¥6 PVCs per minute. In relation to normal beats, PVCs
may be classi�ed to:

1. Bigeminy: every second beat is PVC.

2. Trigeminy: every third beat is PVC.

3. Quadrigeminy: PVC occur at every fourth beat.

4. Couplet: two consecutive PVCs.

5. Non-sustained ventricular tachycardia: ¥3 PVCs in a row take place.

Atrial �brillation. Atrial �brillation (AF) is an abnormal rhythm during which
the electrical impulses are generated chaotically throughout the upper atria of
the heart, characterized by rapid and irregular contractions. It is a most common
type of supraventricular tachycardia. During AF, the electrical impulses are not
generated solely by the SA node; however, they are initiated in other parts of
the atria. These abnormal impulses occur more rapidly and irregularly and may
exceed 350 bmp. Instead of producing an atrial beat, the muscles just �brillate
ine�ectively and resulting in no P waves. The rapid and irregular impulses cause
ine�cient contractions of the atria thus reducing the ability of the atria to pump
blood into the ventricles. The ventricles are excited by the fast, irregularly spaced
atrial impulses; however, ventricles are partially protected by the AV node when
they pass through it. The AV node dampens a number of those rapidly initiated
atrial impulses before conducting some of the impulses to the ventricles. Still,
the ventricular rate is usually much faster than normal, and it is also irregular.
The contractions of the ventricles may average 150 bpm, which is much slower
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than the rate in the atria since the ventricles are unable to contract at 350 bpm.
Even at an average rate of 150 bpm, the ventricles may not have enough time to
completely �ll with blood before the following contraction, particularly without
the normal contraction of the atria. Thus AF decreases the amount of blood
pumped by the ventricles because of their rapid rate of contraction and the
absence of normal atrial contractions. The sequence of electrical and mechanical
events during the AF is as follows:

1. Chaotic impulses occur in the atrial tissue �brillated atria.

2. Irregular pulses pass the AV node and ventricles in an irregular fashion,
which results in ine�cient pumping of blood.

3. The following cycle might be irregular if the AF episode is not over or if
AF is permanent � otherwise it returns to the normal SR.

AF often starts as brief periods of irregular rhythm which become longer
and possibly constant over time; thus AF is classi�ed into three major types (Zoni-
Berisso et al., 2014 [35]):

1. The paroxysmal type is observed when episodes of AF occur spontaneously
and may stop on their own, without any treatment being involved. The
rhythm may return to SR within a week, usually in  24 hours. In some
cases, the duration of AF episodes may be ¤30 s.

2. The persistent type occurs when the rhythm of AF continues for more than
a week. It may stop on its own, or it may still be restored to SR with some
treatment involved.

3. The permanent type of AF takes place when the normal heart rhythm
cannot be restored with treatment.

2.1.2 Epidemiology and comorbidities

Premature ventricular contractions. PVCs are one of the most common heart
rhythm abnormalities which are commonly referred to as being benign (Kennedy
et al., 1985 [3]; Gaita et al., 2001 [36]). It is estimated that PVCs are encountered
in 1�4 % of the general population (Kennedy et al., 1985 [3]). The frequency
of the PVC occurrence in the adult population varies and depends on various
factors such as the medical condition, the physical activity, etc. More than a
half (69 %) of the population had at least 1 PVC event during the 24-hour
monitoring period Rotz et al., 2016 [37]. In a population of normal and healthy
subjects, PVCs have been detected in 1 % of the subjects when using standard
12-lead electrocardiography and in 40�75 % of subjects when performing 24�
48-hour Holter monitoring (Ng, 2006 [4]). The prevalence of PVCs is mostly
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age-dependent (Messineo, 1989 [38]), ranging from <1 % in children under 11
years old (Southall et al., 1981 [39]), ¤69 % in healthy adults aged 25�41 (Rotz
et al., 2017 [40]), and ¥69 % in subjects aged >75 (Camm et al., 1980 [41]).
During physical exercise testing, PVCs were detected in 27 % of subjects with a
known cardiac disease and had a small, however statistically signi�cant increased
mortality hazards ratio of 1.71�1.86 (Morshedi-Meibodi, 2004 [42]). However,
subjects su�ering from a heart disease are denoted by a higher incidence of
complex or frequent PVCs (Bikkina et al., 1992 [43]). Overall, PVCs appear to
be a frequent �nding with a small but statistically signi�cant increase in risk of
sudden cardiac death and mortality (Abdalla et al., 1987 [44]). Since, PVCs are
common on routine screening ECGs, a total of 1415 (5.8 %) participants had at
least 1 PVC at baseline, and 591 developed an incident ischemic stroke during
an average (SD) follow-up of 6.0 (2.0) years, resulting in a 38 % increased risk
of ischemic stroke (Agarwal et al., 2015 [45]).

PVCs are thought to induce cardiomyopathy Du�ee et al., 1998 [46], since
pharmacological suppression of PVCs in patients with presumed idiopathic di-
lated cardiomyopathy subsequently improved the left ventricular (LV) systolic
dysfunction. Many of these patients often have no underlying structural heart
disease and subsequently develop LV dysfunction and dilated cardiomyopathy;
in cases of those with an already impaired LV function from the underlying struc-
tural heart disease, the worsening of the LV function may occur (Sarrazin et al.,
2009 [47]; Singh, 1997 [48]). The exact prevalence of PVC-induced cardiomyopa-
thy is not known; it is an underappreciated cause of LV dysfunction, and it is
primarily observed in older patients (Gaita et al., 2001 [36]). This observation
could be due to the fact that the prevalence of PVCs increases with age or with
the possibility that PVC-induced cardiomyopathy develops in a time-dependent
fashion (Yarlagadda et al., 2005 [49]). In fact, Niwano et al., 2009 [50] demon-
strated progressive worsening of the LV function in patients with frequent PVCs
(>1000 beats/day) as measured by the LV ejection fraction (LVEF) and LV end-
diastolic dimension over a follow-up period of 4 to 8 years. On the other hand,
PVCs in apparently healthy people were associated with a twofold increase in
the risk of all-cause mortality, myocardial infarction and cardiac death (Ng, 2006
[4]).

In meta-analysis of 11 studies, subjects with frequent PVC (¥1 time during
a standard ECG recording or ¥30 times over a one-hour recording) were facing
two-times higher risk of cardiac death than the subjects without frequent PVC.
Although most studies made attempts to exclude high-risk subjects, such as
those with histories of a cardiovascular disease, they did not test the participants
for any underlying structural heart disease (Ataklte et al., 2013 [6]).

In a study of 239 subjects having frequent PVCs (>1000 beats/day) with-
out structural heart disease (i.e., in the presence of the normal heart function),
there were no serious cardiac events during 5.6 years on average, but there was
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a negative correlation between the PVC prevalence and a decrease of the left
ventricular ejection fraction and positive correlation between the PVC preva-
lence and the increase of left ventricular diastolic dimension. In this study, the
absence of a heart disease was excluded by echocardiography, cardiac magnetic
resonance imaging in 63 subjects and Holter monitoring (Niwano et al., 2009
[50]).

In the ARIC study of 14.783 subjects followed for 15 to 17 years, those
with the detected PVC during a 2-minute ECG, and without hypertension or
diabetes at the beginning, were facing a risk of stroke increased by 109 % (Wor-
thington et al., 2010 [51]). Hypertension or diabetes, both being risk factors
for stroke, did not change signi�cantly the risk of stroke for the subjects with
PVCs (Worthington et al., 2010 [51]). It is possible that PVCs identi�ed those
at risk of stroke with blood pressure and impaired glucose tolerance on a contin-
uum of risk below the conventional diagnostic thresholds for hypertension and
diabetes (Worthington et al., 2010 [51]). Subjects in the ARIC study with any
PVC were running a risk of heart failure increased by 63 % (Agarwal et al., 2012
[52]) and were >2 times as likely to die due to coronary heart disease. Further-
more, the risk was also higher for subjects with or without baseline coronary
heart disease (Massing et al., 2006 [53]).

In the Niigata study of 63.386 subjects with a 10-year follow-up period those
with PVC during a 10-second recording were facing a risk of AF increased nearly
3 times independently from such risk factors as age, male gender, body mass in-
dex, hypertension, systolic and diastolic blood pressure, and diabetes (Watanabe
et al., 2006 [8]).

Ventricular ectopy is more prevalent in men than in women of the same age.
The male gender alone runs the increased risk of identifying PVCs on routine
screening, with an odds ratio for the male gender equalling to 1.39 compared with
women. Furthermore, the frequency and probability of PVC occurrence increases
with age (see Fig. 2.3), re�ecting the increased prevalence of hypertension and
cardiac disease in ageing populations (Kostis et al., 1981 [1]).

PVCs have been examined as predictors of cardiovascular morbidity and
mortality, especially with a pre-existing heart disease (Massing et al., 2006 [53]).
Structural anomalies in the myocardium and/or pericardium were present in 85%
of patients with exercise-induced PVCs. The majority of subjects with exercise-
induced PVCs show evidence of myocardial disease consistent with acute or
previous myocarditis or myopericarditis (Jeserich et al., 2015 [54]).

PVCs in subjects with heart diseases, i.e., myocardial infarction, may be
associated with a variety of underlying cardiac conditions such as cardiomyopa-
thy and increased risks of developing ventricular tachycardia, or a sustained run
of rapid ventricular contractions (Koplan et al., 2009 [55]). Prolonged ventricular
tachycardia may result in a low cardiac output, low blood pressure, and fainting
(syncope). Ventricular tachycardia is life-threatening; it may occur suddenly

22



10-29 30-39 40-49 50-59 60-69
Age

0

10

20

30

40

50

60

P
ro
b
a
b
il
it
y,

%

> 0 PVCs

> 50 PVCs

> 100 PVCs

Fig. 2.3. Probability (%) of PVC occurrence during 24 hours in healthy subjects as a
function of age (Kostis et al., 1981 [1]).

with no prior warning, and frequently develops into ventricular �brillation. It
is a chaotic rhythm when the ventricles �brillate rapidly and randomly. When
ventricular �brillation occurs, the heart is unable to pump blood into the brain
and the rest of the body e�ectively, thus, if untreated, it can be fatal within min-
utes, killing 250,000 Americans annually due to the incidence of sudden cardiac
death (Chugh et al., 2008 [56]).

Recent studies have shown that those subjects with frequent occurrence of
PVCs, i.e., several thousand a day, are associated with the left atrial enlarge-
ment in patients with the normal left ventricular ejection fraction � thus they
can develop cardiomyopathy (Park et al., 2014 [57]). In such cases, if the PVCs
are reduced or removed, e.g., via ablation therapy, cardiomyopathy usually re-
gresses (Shiraishi et al., 2002 [58]; Belhassen, 2005 [59]).

Atrial �brillation. Atrial �brillation is the most common and ubiquitous type
of cardiac arrhythmia (Ball et al., 2013 [60]; Munger et al., 2014 [61]).

Epidemiological evidence collected over the past few decades suggests a
rapidly increasing prevalence of AF, e.g., the analysis of the current global epi-
demiological data has shown that the number of new AF cases increased by
about 5 million from 1990 to 2010 (Chugh et al., 2013 [62]). AF resulted in
112,000 deaths in 2013, up from 29,000 in 1990 (Naghavi et al., 2015 [63]).

Recent estimates also suggest that 12.1 to 15.9 million patients will have
AF in the United States by 2050 (Miyasaka et al., 2006 [64]) and 17.9 million
people in Europe by 2060 (Chugh et al., 2013 [62]; Krijthe et al., 2013 [65]).

The estimated AF prevalence in the United States in 2010 was 2.7 to 6.1
million, and is expected to rise to the level of between 5.6 and 12 million in
2050 (Roger et al., 2011 [66]; Menezes et al., 2013 [67]). In Europe and North
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America, as of 2014, it a�ects about 2 % to 3 % of the population (Zoni-Berisso
et al., 2014 [35]). This is an increase from 0.4 to 1 % of the population around
2005 (Fuster et al., 2007 [68]). According to the latest trends, the prevalence of
AF will increase dramatically in the near future. Various studies expect a 2-to-3
fold increase in the prevalence of AF by the year of 2050 (Go et al., 2001 [69];
Miyasaka et al., 2006 [64])

The estimated numbers of individuals to be a�ected by AF in the upcom-
ing decades varies quite substantially among di�erent surveys, falling between
5.6 million (Go et al., 2001 [69]) to 15.9 million (Miyasaka et al., 2006 [64]) in the
United States alone. Similarly, the most recent data suggest the AF prevalence
in the US will rise from 5.2 million in 2010 to 12.1 million by 2030 (Colilla et al.,
2013 [18]). A discrepancy among the di�erent studies is mainly caused by the
incorrectly estimated baseline numbers of the population su�ering from AF.

It has been estimated that 33 million people around the world are su�er-
ing from AF (Chugh et al., 2013 [62]). Nevertheless, given that AF is usually
asymptomatic and consequently undiagnosed for many patients, these numbers
most likely represent an underestimate. Therefore, reasonably larger numbers
of the actual prevalence are expected, reaching up to 2 % of the general popula-
tion (Camm et al., 2010 [70]).

The prevalence of AF increases substantially with age (see Fig. 2.4) as
0.14 % of the individuals under 50, 4 % between 60 and 70 years old, and 14 %
over 80 years old are a�ected (Marini et al., 2005 [71]; Barrios et al., 2012 [72];
Zoni-Berisso et al., 2014 [35]). It is also higher in men than women with the odds
of developing AF being twice as high for each advancing decade of age (Benjamin
et al., 1994 [73]; Marini et al., 2005 [71]; Heeringa et al., 2006 [74]; Lloyd-Jones,
2004 [75]). Consequently, more than 12 % of adults aged >75 years have a
diagnosis of AF (Heeringa et al., 2006 [74]).
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Fig. 2.4. Prevalence (%) of AF as a function of age (Barrios et al., 2012 [72]).
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AF is a most common secondary occurence to cardiovascular pathologies
as well as to systemic disorders; this relationship was �rst demonstrated in (Ben-
jamin et al., 1994 [73]; Menezes et al., 2013 [67]). It has a signi�cant impact
on morbidity and mortality: it is estimated that AF increases the risk of stroke
�vefold, and about 15 % of all the patients experiencing stroke have AF as
well (Roger et al., 2011 [66]; Menezes et al., 2013 [67]). The percentage of
strokes attributable to AF increases from 1.5 % at 50�59 years of age to 23.5 %
at 80�89 years of age (Roger et al., 2011 [66]).

AF is associated with an increased risk of heart failure, dementia, and
stroke (Justin et al., 2013 [76]). The presence of AF at the stroke onset as well
as during the acute phase was con�rmed by a standard electrocardiogram in
869 (24.6 %) of 3530 patients with ischemic stroke. With respect to patients
without arrhythmia, those with AF in more cases were women, aged 80 years
and older, su�ering from coronary heart disease and peripheral arterial disease.
High prevalence of AF was found in patients with a �rst-ever ischemic stroke,
especially among elderly women (Marini et al., 2005 [71]).

AF, together with related complications (i.e., heart failure, stroke, demen-
tia) (Gross et al., 2013 [77]), imposes a huge economic burden on many countries
reaching 1�2 % of the total health care expenditure (Wolowacz et al., 2011 [78]).
For instance, in the US, the annual AF-related cost was estimated to be in
the range from 6.0 (exclusively AF-related costs) to 26.0 billion dollars (includ-
ing indirect costs; Kim et al., 2011 [79]). A wide range of the estimated costs
was suggested in order not to underestimate the lower boundary, since it is not
completely clear to what extent AF contributes to detrimental comorbidities
requiring special medical care. Comparable numbers of AF-related costs have
been estimated in the countries of the European Union.

The Euro Heart Survey on AF (Ringborg et al., 2008 [80]) counted the
combined annual cost of 6.2 billion euros in just �ve European countries (Greece,
Italy, the Netherlands, Poland, and Spain). Approximately one-third of AF costs
are due to hospitalizations, whereas outpatient medical and pharmacy expendi-
ture accounts for the remaining two-thirds (Kim et al., 2011 [79]). In addition,
individuals with AF are hospitalized twice as many times as those without AF,
while multiple cardiovascular hospitalizations are even 8 times more common.
As a result, the total direct medical costs are considerably higher (around 70 %)
for patients with AF than for those without AF (Kim et al., 2011 [79]). It has
been speculated that at least 2-fold reduction in AF prevalence could be achieved
if other cardiovascular risk factors were maintained under the safe levels (Huxley
et al., 2011 [81]).

Several important factors are considered to be among the most in�uential
points concerning the growing AF epidemic: the ageing of population, the glob-
ally increasing numbers of people a�ected by hypertension and obesity, and the
considerably improved survival from other cardiovascular diseases, such as heart
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failure and myocardial infarction. These conditions cause structural changes in
myocardium, and therefore increase the risk for developing AF (Chugh et al.,
2013 [62]). On the other hand, the emerging novel technologies for arrhyth-
mia detection, i.e., implantable cardiac monitors, internal and external loop
recorders, together with new strategies, contribute to the increased numbers of
newly diagnosed AF cases. As a result, the increased AF awareness and the
initiatives to improve the detection of AF (Fitzmaurice et al., 2007 [82]; Lowres
et al., 2013 [20]; Lowres et al., 2014 [83]) have contributed to the greater inci-
dence and reported prevalence of AF in addition to the ageing population and
the improved survival from other cardiovascular diseases.

2.1.3 Mechanism and Pathophysiology

Premature ventricular contractions. The underlying mechanism of the PVC
origin may vary depending on the clinical circumstances. The occurrence of
PVCs is explained by three known physiological mechanisms, namely, the auto-
maticity (e.g., enhanced normal and abnormal), the reentry (e.g., anatomic and
functional), and the triggered activity (e.g., delayed and early afterdepolariza-
tion) (Gaztañaga et al., 2012 [84]).

The enhanced cardiac automaticity refers to the accelerated initiation of
an action potential by either a normal pacemaker tissue (i.e., enhanced normal
automaticity) or by abnormal ventricular tissue within the myocardium (i.e.,
abnormal automaticity). Enhanced automaticity suggests an ectopic focus of
pacemaker cells in the ventricle that has a subthreshold potential for �ring. The
basic rhythm of the heart raises these cells to the threshold which precipitates an
ectopic beat. This process is the underlying mechanism for arrhythmias due to
excess certain organic compounds and some electrolyte de�ciencies, particularly
low blood potassium (also known as hypokalemia). This ectopy of the ventricles
when associated with a structurally normal heart most commonly occurs from
the right ventricular out�ow tract, and the mechanism behind this is thought to
be 'enhanced automaticity' versus 'triggered activity'. PVCs can be triggered
when inhibitors, such as ca�eine, lead to the increased intracellular concentra-
tion of calcium ions (Huizar et al., 2011 [85]). The discharge rate of normal
or abnormal pacemakers may be accelerated by drugs, various forms of cardiac
disease, reduction in extracellular potassium, or alterations of the autonomic ner-
vous system tone. Enhanced normal automaticity accounts for the occurrence
of sinus tachycardia, while abnormal automaticity may result in various atrial or
ventricular arrhythmias. Potassium ion concentrations are a major determinant
in the magnitude of the electrochemical potential of the cells, and hypokalemia
makes it more likely that cells will depolarize spontaneously. Hypercalcemia has
a similar e�ect, although clinically it is of less concern. Magnesium ions a�ect
the �ow of calcium ions, and they also a�ect the function necessary for main-
taining the potassium levels; therefore, low blood magnesium may also result in

26



spontaneous depolarization.
Reentry usually occurs when a slowly conducting tissue, e.g., in case of post-

infarction myocardium, develops adjacent to the normal tissue. Post-infarction
PVCs, on the other hand, tend to occur in regions of scar and/or damaged
myocardium and may be due to enhanced automaticity, triggered activity, or
possibly reentry. It has been postulated that reentry may play a role in such
cases, because post-infarction PVCs often exhibit characteristics similar to post-
infarction ventricular tachycardia (Hachiya et al., 2002 [86]). This condition is
frequently observed in patients with underlying heart disease creating areas of
di�erential conduction and recovery due to myocardial scarring or ischemia. Dur-
ing ventricular activation, one bundle tract's area of slow conduction activates
the other tract's bundle �bers post block after the rest of the ventricle has recov-
ered, resulting in an extra beat. Reentry can produce single ectopic beats, or it
can trigger paroxysmal tachycardia. Triggered beats are considered to be caused
by after-depolarizations triggered by the preceding action potential. These are
often seen in patients with ventricular arrhythmias due to digoxin toxicity and
reperfusion therapy after myocardial infarction. The already existing damage to
the myocardium can also provoke PVCs. The myocardial scarring that occurs
in myocardial infarction and also due to the surgical repair of congenital heart
disease can disrupt the conduction system of the heart and may also irritate
the surrounding viable ventricular myocytes thus making them more likely to
depolarize spontaneously.

The triggered activity occurs due to the after-depolarizations, i.e., the os-
cillations of the membrane potential before or after the completion of repo-
larization, which are triggered by the preceding action potential (Zipes, 2003
[87]). When oscillations depolarize the cell to the level of the threshold poten-
tial, they induce spontaneous action potentials (triggered activity) which are
responsible for premature beats and tachycardias. After-depolarizations occur,
only in the presence of a previous action potential (the trigger), and when they
reach the threshold potential, a new action potential is generated. This may
be the source of a new triggered response, leading to self-sustaining triggered
activity. Afterdepolarization can occur either during (early) or after (delayed)
completion of repolarization. Early afterdepolarizations are usually responsible
for bradycardia-associated PVCs as well as for ischemia and electrolyte distur-
bance.

Atrial �brillation. The pathophysiology and the underlying mechanisms of AF
are not yet fully understood. Nevertheless a number of theories and hypothe-
ses tempting to explain the mechanism of atrial �brillation have emerged (see
Fig. 2.5). Theories and hypotheses of mechanisms can be divided into two major
groups, namely, single-focus (Fig. 2.5 (a)�(d)) and multiple-source (Fig. 2.5 (e)�
(h)).
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Fig. 2.5. AF mechanisms: (a) single automatic focus, (b) mother wave, (c) �xed
rotor, (d) moving rotor, (e) multiple foci, (f) unstable re-entry circuits, (g) multiple
wavelets, (h) single focus together with multiple wavelets (partially based on Camm

et al., 2009 [88]).

Single-focus hypotheses state that AF occur due to the increased auto-
maticity or a single rapid macro re-entry circuit in the area of focal activity, with
wavefronts emerging from the primary driver circuit (i.e., the rotor) breaking
against regions in the atria of the variable refractoriness thus causing arrhyth-
mia (Camm et al., 2005 [89]). The excitation impulses arising from di�erent
areas of focal activity may result in the ectopic beats which, if rapid enough,
may produce �brillatory conduction and triggering of AF.

According to the multiple sources hypothesis, electrical activation in AF
proceeds as multiple re-entrant wavelets separated by lines of functional con-
duction block generating irregular re-entrant activity which occurs in an asyn-
chronous fashion in di�erent regions of the atrial (i.e., it is a multiple circuit
re-entry). These wavelets continuously initiate themselves (i.e., a leading cir-
cle re-entry) or each other (i.e., a random re-entry). The modelling of multiple
wavelet hypothesis by Moe et al., 1964 [90] showed that �brillatory conduction
during episodes of AF may be initiated and sustained by the propagation of
random wavelets in the heterogeneous arterial tissue. It was concluded that
wavelets and the subsequent 'daughter wavelets' may stem from any trigger-
ing mechanisms. AF is sustained as long as an adequate number of wavelets
propagates simultaneously, in turn depending on the minimally su�cient atrial
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mass. Therefore, this hypothesis de�nes AF as a self-sustaining process inde-
pendent either from a single source initiator, i.e., an ectopic focus, or the atrial
structure needed to sustain a circular propagation. A couple of decades later,
the hypothesis was supported with the experiments by Allessie et al., 1985 [91],
demonstrating that a minimum of 4�6 wavelets may be and adequate number to
sustain AF.

The evolution of AF from paroxysmal to persistent and then to permanent
is in�uenced by the atrial re-modeling caused by arrhythmia per se and/or by
the progression of the underlying heart disease (Nattel et al., 2008 [92]). Allessie
et al., 1985 [91] suspected that AF produces both electrophysiological and struc-
tural abnormalities which may result in a permanent AF. It was revealed that the
sources of focal triggering located on the surface of pulmonary veins are respon-
sible for the initiation of AF Haïssaguerre et al., 1998 [93]. In case of paroxysmal
AF, the electrophysiological remodeling and development of functional re-entry
substrates stemming from the altered expression and/or function of the cardiac
ion channels can reverse-remodel when AF has been terminated (Allessie et al.,
2002 [94]; Nattel et al., 2008 [92]). Ultimately, if AF frequently reoccurs and
is sustained for longer periods of time, a hazardous condition of atrial remod-
elling may start, which further leads to an extremely undesired and di�cult
to manage phenomenon when 'AF begets AF' (Wij�els et al., 1995 [95]). In
other words, atrial cells start to remodel electrophysiologically during prolonged
episodes of AF, therefore, a more abnormal atrial substrate is created, which
promotes the sustenance of AF even longer. As atrial disease progresses to ir-
reversible structural changes, AF becomes permanent (Nattel et al., 2008 [92]).
The propagation may be restricted, but AF will not terminate during catheter
ablation due to lack of a localized source. However, owing to the complex tem-
poral interplay between the AF driver and the atrial substrate, electrical and
structural re-modeling may allow AF to persist even after the driver has been
removed. As a result, depending on the amount of substrate in the atrial tissue,
re-entry can originate in multiple circuits. During even more advanced stages
of AF, i.e., chronic AF, multiple re-entry circuits may become highly unstable,
engaging a rotor re-entry. Therefore, if AF is treated early, especially when AF
episodes are rare and short, its progression can be halted.

2.1.4 Symptoms, Risk Factors, Treatment and Management

Symptoms and risk factors. Mostly, both PVC and episodes of AF are asymp-
tomatic (Bhandari et al., 1992 [96]); however, the symptoms listed in Table 2.1
may be experienced during these arrhythmic events:

Many risk factors may be responsible for causing PVC and AF; therefore,
a number of risk factors and possible complication are presented in Table 2.2.
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Table 2.1. List of symptoms experienced during arrhythmic events

No. Symptom PVC AF
1 Heart palpitations Y Y
2 Dizziness Y Y
3 Fainting (syncope) Y Y
4 Lightheadedness Y Y
5 Weakness (rest, exercise / activity) Y Y
6 Fatigue Y Y
7 Shortness of breath Y Y
8 Chest pain Y Y

* Y stands for YES

Table 2.2. List of arrhythmia-causing risk factors and complications

No. Risk factor and complications PVC AF

1 Myocardial infarction Y Y
2 Heart failure Y Y
3 Stroke Y Y
4 Coronary artery disease Y Y
5 Blood pressure (hypertension) Y Y
6 Cardiomyopathy Y Y
7 Congestive heart failure Y Y
8 Congenital heart disease Y Y
9 Disease of heart valves (prolapse) Y Y
10 Rheumatic fever and heart disease Y Y
11 Other heart rhythm problems Y Y
12 Chronic obstructive pulmonary disease Y Y
13 Hypoxia (lung diseases) Y Y
14 Hyperthyroidism (thyroid dysfunction) Y Y
15 Myocarditis (muscle in�ammation) Y Y
16 Cardiac contusion (heart muscle injury) Y Y
17 Anemia Y Y
18 Electrolite imbalance (hypokalemia, hypomagnesemia) Y Y
19 Stress, anxiety Y Y
20 Infections Y Y
21 Raised hormone level (adrenaline, thyroid) Y Y
22 Excessive ca�eine or alcohol intake Y Y
23 Stimulant drugs and antidepressant medications Y Y
24 Smoking Y Y
25 Diabetes mellitus Y Y
26 Obesity Y Y
27 Sleep apnea Y Y
28 Chronic kidney disease Y Y

* Y stands for YES

30



Treatment and Management of Premature Ventricular Contractions. Premature
ventricular contractions (PVCs) are the most common type of irregular heart-
beats. The reason for treating PVCs is to relieve the symptoms of palpitation or
to treat the conditions which cause PVCs since such conditions are potentially
life-threatening. Figure 2.6 shows the options used for the treatment and man-
agement of PVCs. In most cases, PVCs can be controlled with lifestyle changes,
such as reducing or eliminating ca�eine, tobacco and alcohol intake or reducing
stress and anxiety. A beta blocker medication may also be prescribed for pa-
tients with PVCs. Anti-arrhythmics and ablation is another treatment option
for some patients with frequent or prolonged PVCs.

PVC treatment and 
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Nonsurgical 
procedures
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Surgical 
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Fig. 2.6. General approaches to treat and manage PVCs.

In the absence of heart disease and if PVCs are infrequent or if PVCs re-
duce in frequency when performing the exercise tolerance test, and there is no
documented ventricular tachycardia, no further investigation and treatment is
required, particularly if PVCs are relatively asymptomatic. Subjects with signif-
icant symptoms should have their blood pressure checked and investigated, and
treated if the pressure is high. For the relief of palpitations, some preventative
measures to eliminate the triggers might be considered, such as stopping alco-
hol and ca�eine intakes, quitting the use of medications containing adrenaline,
stopping drug abuse, and giving up smoking. In healthy individuals, PVCs can
often be resolved by restoring the balance of magnesium, calcium and potassium
within the body.

Beta-blockers may be used to control symptoms in patients where PVCs
arise from multiple sites. It should also be considered in patients with the im-
paired ventricular systolic function and/or heart failure. There is no evidence to
support the use of other anti-arrhythmic agents simply for the sake of suppress-
ing PVCs, especially considering their pro-arrhythmic and other side e�ects (Ng,
2006 [4]). A therapeutic medical trial or catheter ablation may be considered
in patients with left ventricular dysfunction and frequent PVCs (a generally ac-
cepted range is referred to as ¡10,000�20,000 or >10 % of the total beats per 24
hours) if the clinical suspicion for PVC-induced cardiomyopathy is high (Kanei
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et al., 2008 [97]; Niwano et al., 2009 [50]).
Anti-arrhythmia medications are used to control PVCs in order to pre-

vent ventricular tachycardias, ventricular �brillations, and sudden death. Un-
fortunately, there is little scienti�c evidence that suppressing PVCs with anti-
arrhythmic medications will prevent ventricular tachycardias, ventricular �b-
rillations, and sudden death. Some anti-arrhythmia medications can actually
cause abnormal heart rhythms. Thus anti-arrhythmic medications are only pre-
scribed cautiously for patients at high risk of developing ventricular tachycardia
and ventricular �brillation, and, usually, initially such prescriptions are made
in the hospital setting. Although anti-arrhythmic medications could suppress
PVCs, they increase the risk of death (Ng, 2006 [4]). This does not apply to
beta-blockers which are prescribed to many heart patients for many reasons, and
which not only do not accelerate arrhythmias, but usually decrease premature
ventricular contractions. In many patients with PVCs and a signi�cant under-
lying cardiac disease, or with severe symptoms, electrophysiology testing may
be recommended. This is a test performed with catheters to see if a patient is
at risk of life-threatening ventricular arrhythmias, which are treated with either
medications or, sometimes, with implantable de�brillators.

Catheter ablation treatment is advised for subjects with ventricular dys-
function and frequent arrhythmias or very frequent PVC (>20 % in 24 h) and
normal ventricular function (Niwano et al., 2009 [50]). This procedure destroys
the area of the heart tissue that is causing the irregular contractions characteris-
tic of PVCs by using the radio frequency energy. Reducing frequent PVCs (i.e.,
>20 %) by antiarrhythmic drugs or by catheter ablation signi�cantly improves
the heart performance (Belhassen, 2005 [59]; Ng, 2006 [4]).

Heart attacks can increase the likelihood of having PVCs. In severe cases,
an implantable de�brillator may be used for patients with nonsustained ven-
tricular tachycardia due to prior myocardial infarction, left ventricular ejection
fraction less than or equal to 40 %, and inducible ventricular �brillation or sus-
tained ventricular tachycardia at electrophysiological testing (Ng, 2006 [4]; Ahn,
2013 [98]).

Treatment and management of atrial �brillation. The strategy for atrial �brilla-
tion treatment and management depends on the type of AF and its progression
(i.e., paroxysmal, sustained or permanent), the severity of symptoms, the un-
derlying cause of AF (e.g., thyroid disorder) and other problems with the heart.
Generally, the main goals of the AF treatment are to reset the rhythm or to con-
trol the rate and to prevent blood clots. Figure 2.7 shows the available options
for the treatment and management of AF.

Many people experience episodes of AF and yet are not aware of them.
Therefore lifelong anticoagulants, such as aspirin, or anti-clotting medications,
such as warfarin, or a novel oral anticoagulant may be recommended to minimize
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Fig. 2.7. General approaches towards the treatment and management of AF.

the risk of stroke even after the rhythm has been restored to normal. (Munger
et al., 2014 [61]).

If there is a possibility and no contraindications, AF is often treated with
medications to slow the heart rate to a near normal range (known as the rate
control) or to convert the rhythm to the normal sinus rhythm (known as the
rhythm control) (Anumonwo et al., 2016 [99]). However, in some cases, a more
invasive treatment, such as surgery or medical procedures using catheters, may
be required.

When the symptoms of AF are bothersome and AF is not permanent, the
rhythm may be reset to the normal sinus rhythm by applying cardioversion.
Cardioversion can be conducted in two ways, by using electrical cardioversion or
cardioversion with drugs.

Electrical cardioversion is used to convert AF to a normal sinus rhythm
and is often used emergently, when the subject is unstable (Oishi et al., 2013
[100]). During electrical cardioversion, an electrical impulse is delivered to the
heart through the electrodes on the chest which temporary pauses the electrical
activity of the heart. When the electrical activity of the heart restarts, the heart
may resume its normal rhythm. The procedure is performed during sedation,
so there is no sensation of the electric impulse. As a preventative measure for
future AF episodes, anti-arrhythmic medications may be prescribed after the
procedure.

Cardioversion with drugs uses medications called anti-arrhythmics in or-
der to restore the normal sinus rhythm. Depending on the heart condition,
intravenous or oral medications may be recommended. The treatment is often
conducted during continuous monitoring of the heart rate. If the heart rhythm
returns to normal, the same or similar anti-arrhythmic medication may be pre-
scribed so that to prevent recurrence of AF. Prior to cardioversion or in case
of permanent AF, an anticoagulant medication, e.g., warfarin, may be given to
reduce the risk of blood clots formation and stroke. Anticoagulant medication
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may also be taken to prevent blood clots from forming even after the rhythm
of heart has been restored to normal. Although medications may help to main-
tain the normal heart rhythm, they can cause various adverse e�ects such as
life-threatening ventricular arrhythmias, e.g., ventricular tachycardia and ven-
tricular �brillation, worsening of heart failure and low blood pressure, or major
bleeding (Jun et al., 2015 [101]; Heidbuchel et al., 2015 [102]). However, some-
times even medications or cardioversion may not provide a signi�cant e�ect, and
there is always a possibility that AF will recur.

In such cases, the catheter ablation procedure may be used to eliminate the
area of heart tissue that is causing the erratic electrical signals in order to restore
the normal heart rhythm. In case of catheter ablation, catheters are inserted
and guided through blood vessels to the heart. Electrodes at the catheter tips
apply radiofrequency energy, extreme cold (e.g., cryotherapy) or heat to destroy
and scar tissues causing erratic impulses. Since the scar tissue does not carry
electricity, the rhythm can thus be normalized. Catheter ablation may correct
AF without the need for medications or implantable devices and may also prevent
recurrence in some people (Amerena et al., 2013 [103]). A surgical procedure to
implant a pacemaker might be required to keep the ventricles beating properly.

Surgical procedures, such as the maze procedure, are generally reserved for
subjects not responding to other treatments or when they may be performed
during other necessary heart surgery, such as the coronary artery bypass surgery
or heart valve repair. The surgical maze procedure is conducted while performing
an open-heart surgery where precise incisions in the upper chambers of the heart
are made to create a pattern of the scar tissue.

2.2 Diagnosis of Premature Ventricular Contractions and Atrial Fib-

rillation

2.2.1 Diagnosis of the Arrhythmia

The diagnosis is made by sensing the pulse and is con�rmed by using an
electrocardiogram (ECG) (Ferguson et al., 2014 [104]), i.e., a typical ECG during
PVCs shows a wide and abnormal QRS complex with a shorter preceding and
longer succeeding intervals, while the ECG during AF shows no P waves and
produces irregular ventricular contractions (Ferguson et al., 2014 [104]). The
evolving technologies provided a wide array of monitoring options for patients
suspected of having cardiac arrhythmias, with each modality di�ering in terms of
the duration of monitoring, quality of recording, convenience, and invasiveness.

There are three forms of ECG testing which are used to assess the elec-
trical activity of the heart under di�erent circumstances: resting ECG, ECG
stress test, and ambulatory ECG. Physicians also use electrophysiologic testing
to diagnose arrhythmias. Electrophysiologic monitoring examines the electrical
function of the heart within the heart itself by inserting catheters � usually thin,

34



�exible tubes � into the coronary arteries. Resting ECG, ECG stress tests, and
electrophysiologic testing are typically used for detecting frequently occurring
arrhythmias, while ambulatory ECG is used for infrequent arrhythmias.

For frequent or constant arrhythmias, physicians perform a resting ECG or
an ECG stress test at a physician's o�ce or at a hospital as 10�15 electrodes are
placed on the subject's chest, arms, and legs. For the resting ECG, the patient
lies down during the test. For the ECG stress test, patients walk on a treadmill
for 5�15 minutes. For subjects who are unable to exercise, the e�ects of the
exercise test on the heart can be simulated with drugs.

To monitor infrequent arrhythmias, the physician uses ambulatory ECG,
or event recording. The patient wears portable ECG devices recording arrhyth-
mic events while the patient is away from the physician's o�ce. Ambulatory
monitoring devices include: Holter monitors and intermittent recorders.

2.2.2 Ambulatory Arrhythmia Monitoring and Screening

Many heart problems are noticeable only during certain activities, including
exercise, eating, sex, stress, bowel movements, and even sleeping; therefore, an
ambulatory ECG is more likely to detect abnormal heartbeats occurring during
these activities. Many people experience irregular heartbeats (i.e., arrhythmias)
from time to time. What this means depends on the type of pattern they pro-
duce, how often they occur, how long they last, and whether they occur at the
same time the symptoms are felt. As arrhythmias can come and go, it may be
hard to record one while the subject is visiting a physician. There are several
di�erent types of ambulatory monitors. The physician decides upon the type
that should work best for the subject and is the most likely to help diagnoze
the heart problem (Hoefman et al., 2010 [105]; Subbiah et al., 2013 [106]). An
ambulatory ECG monitor records the electrical activity of the heart while the
subject is performing the usual daily activities. The ambulatory test means that
the subject walks during the test. This type of monitoring may also be called
ambulatory ECG, Holter monitoring, 24-hour ECG, or cardiac event monitoring.
A continuous recorder gives a 24�72 hour record of the electrical signals from
the heart. A standard ECG monitor records only 40�50 heartbeats during the
brief time when the subject is attached to the machine, whereas a continuous
recorder monitors 100,000 heartbeats in 24 hours. Therefore, it is more likely
to capture any heart problems happening in the course of activity.

Holter monitors. A Holter monitor is used to record ECG continuously during
a period of at least 24�72 hours while the subject is performing his/her regular
daily tasks. A Holter monitor is usually applied if a subject is suspected of having
cardiac arrhythmia less frequently and this arrhythmia fails to be detected with a
conventional ECG recorder. This kind of monitoring is usually performed so that
to verify whether there are any dangerous cardiac arrhythmias that might require
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treatment. A relatively compact recorder (see Fig. 2.8) is worn and attached to
the body with straps for fastening the device itself and sticker electrodes similar
to those applied during the conventional ECG recordings.

Fig. 2.8. Holter monitor Medilog® FD12 plus by Schiller AG.

Wires from the electrodes lead to a small battery-powered device that can
be clipped onto a waistband or a belt, or placed in a small carrying case and
slung over a person's shoulder. The electrode pads are then attached to the skin
of the chest. Thin wires are connected to the electrodes and the monitor. To
verify whether the electrodes are attached correctly, the subject may be brie�y
hooked up to a standard ECG recorder. A conventional ECG recorder employs
12 leads which are useful when diagnosing, e.g., heart attack; however, usually,
not all the leads are of interest. Additionally, it is highly inconvenient for the
subject to wear 10 electrodes for a longer period of time. Therefore, the majority
of portable Holter monitors are designed with 3�7 electrodes capable of recording
1, 2, 3, or 5 channels.

Holter recording is noninvasive and painless; however, sometimes, the sticker
electrodes might irritate the skin during the recording time. Subjects are asked
to keep a diary of events during the 24�72 hour period, which is helpful for know-
ing when the subject was active, sleeping or having any symptoms that might be
caused by cardiac arrhythmia. Subjects keep a diary of their activities, such as
sleeping or eating, so that physicians could associate any arrhythmia with a spe-
ci�c activity. Once the recording has been completed, the recorder and sticker
electrodes are disconnected, and the recorder is taken back to the physician for
the ECG analysis and interpretation. A technician will process the information
from the recorder for the cardiologist to review. Since a Holter recorder is usually
only worn for 24�72 hours, it is particularly helpful when any symptoms occur
at least once a day. If the symptoms happen less frequently, an intermittent
event recorder may be recommended instead. During Holter monitor testing,
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patients should avoid taking showers or baths; they should also limit the use of
small electrical devices, such as electric toothbrushes or razors. Furthermore,
the electrodes used to record ECG are attached to the patient's chest, which
results in discomfort, limited freedom of movement, and an increased feeling of
unhealthiness, especially after wearing the device for several days (Rosero et al.,
2013 [26]). A study conducted by Asmundis et al., 2014 [107] showed that inter-
mittent monitoring is more e�ective in detecting arrhythmic events than the use
of Holter monitors.

Intermittent recorders. An intermittent recorder is employed when the symp-
toms of an irregular heart rhythm are rare. Compared to the Holter monitors,
the intermittent recorder can be used for a longer period of time. The informa-
tion collected by an intermittent recorder can often be sent over the phone to a
physician for the analysis, interpretation, and further actions. The approach by
which the intermittent recording is performed depends on the type of monitor
in use.

Fig. 2.9. External loop recorder King of Hearts® by CardioComm Solutions, Inc.

Loop recorder. A loop recorder is used to perform a continuous recording of the
ECG signal (see Fig. 2.9). It records ECGs when some symptoms are present.
Loop recorders also save a small amount of information about how the heart
was beating when the subject pressed the recording button. A continuous loop
recorder captures only a few minutes worth of the ECG at a time on its memory.
It continuously records new information and discards the oldest information, so
that at any time it contains only the last few minutes of ECG in the memory.
Since the loop recorder is continuously refreshing its memory, the loop recorder
can be carried for long periods of time. This is called pre-symptom recording.
This feature is especially useful for patients who faint when their heart problems
occur and can press the button only after they wake up. Electrodes are attached
to the chest in the same way as a Holter monitor is. When symptoms are being
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experienced, the subject presses a button on the monitor to start recording the
heart rhythm. The recorder may start recording on its own when an irregular
rhythm is detected. Instead, an additional hand-held device might also be used to
start the monitor when symptoms occur. The recorder can be worn for several
weeks. This may be a good choice for subjects experiencing rarely occurring
symptoms, such as once every 6 months. Furthermore, loop recorders are optimal
for capturing brief arrhythmia episodes when it takes too long to apply an event
recorder or for capturing ECG recordings of episodes that are associated with
incapacitating symptoms such as syncope. Subjects experiencing symptoms only
a few times a year may be recommended to wear an implantable device which is
inserted in the chest for up to 18 months.

Fig. 2.10. Implantable loop recorder Reveal LINQTM by Medtronic, PLC.r (left) and
an AAA battery (right) for size comparison.

Implantable loop recorders. The implantable loop recorder (see Fig.2.10) is a
miniature, usually single-lead, subcutaneous loop recorder which is implanted
between the chest skin and the rib cage, above the heart, by means of surgery,
sometimes using only local anaesthesia. Same as the standard loop recorder, the
implantable one can be programmed for automatic recording whenever irregular
rhythm is detected. Furthermore, the implantable loop recorder may be trig-
gered externally from the remote control, e.g., attached to the wrist. Implantable
loop recorders are particularly useful either when symptoms are infrequent and
are not amenable to diagnosis when using short-term external ECG recording
techniques or when it is required to aggregate long-term data, e.g., a burden of
PVCs or AF. This kind of implantable devices may operate for up to 6 years and
may even be recharged by using wireless charging. The stored data is retrieved
through the skin by using wireless communication. There is no need to unplug
the device, e.g., when taking a shower, and there is no discomfort in wearing
it; also, there is no di�culty related with attaching and reattaching electrodes
since no external electrodes or power sources are required. Such characteristics
are suitable for long-term continuous monitoring in high-risk subjects with re-
current episodes of palpitations or syncope and documented premature beats or
AF, and for risk strati�cation in subjects who have sustained myocardial infarc-
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tion and for those who have certain genetic disorders (Krahn et al., 2004 [108]).
However, the presence of an active infection or bleeding diathesis may preclude
implantation. Other adverse factors include the need for a minor surgical pro-
cedure, the di�culty of always being able to di�erentiate supraventricular from
ventricular arrhythmias, the presence of under- or over-sensing that may exhaust
the memory of the implantable loop recorder, and the cost of the device. The
implantable loop recorder has a high initial cost; however, it may actually be
more cost-e�ective than a strategy incorporating multiple nondiagnostic inves-
tigations (Davis et al., 2012 [109]).

Event monitor. Event monitors are used when symptoms are presumed to be
due to the rhythm disturbances when they occur less frequently than once during
a 24�48 hour period. Like loop recorders, event monitors tend to be smaller than
Holter monitors due to the lesser information storage capacity since the recording
is only enabled when an incidence occurs (as opposed to continual recording).
Event monitors are capable of recording short episodes of an ECG and need not
be worn continuously. Although an event monitor could be detached from the
body for hygiene procedures, it should still be reattached afterwards and worn for
at least 24 hours. There is a number of di�erent types of event monitors, some
of which require attaching electrode patches with wires to the chest area and
linking the wires to a recording device. Others require no patches, however such
devices are worn as a bracelet or a wrist watch or used as thumb ECG devices
(see Fig. 2.11). In these cases, the ECG is recorded by contacting a second
electrode with the opposite hand or by touching both electrodes with thumbs.
When symptoms are present, the monitor could be temporarily attached to the
body. Depending on the design, the back of the device might have small metal
electrodes � or if the device is of the bracelet type, it usually has one electrode
on the back and the second electrode on the top of the bracelet. The recording is
usually activated by pressing the record button on the monitor attached to the
chest or by touching the bracelet. The recording might last for up to a minute or
slightly more. The recorded ECG might then be transmitted, for example, over
the smartphone via the internet connection to the physician for further analysis
and interpretation. An event monitor might be issued for at least one month to
allow capturing suspicious cardiac events.

Alternative screening approaches. New, more convenient and cost-e�ective so-
lutions, strategies and technological approaches for the monitoring of arrhyth-
mia have been emerging, for instance, the use of a smartphone camera and a
dedicated App (Freedman, 2016 [31]; Garabelli et al., 2017 [110]). Such ap-
proaches allow for the initial arrhythmia monitoring without attaching multiple
electrocardiogram electrodes to the body. However, camera-based approaches
are not intended for long-term continuous arrhythmia screening. Long-term
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Fig. 2.11. Event monitor Zenicor thumb-ECG by Zenicor Medical Systems AB.

photoplethysmogram-based screening requires continuous recording and analy-
sis of the photoplethysmogram signals, which is associated with motion-induced
artifacts and may dramatically increase the rate of false alarms. Therefore, ap-
proaches capable of distinguishing between the normal and abnormal rhythm
from the artifacts are required. This would allow for reliable, long-term con-
tinuous arrhythmia screening by employing unobtrusive, e.g., wrist-band type,
devices without using electrocardiogram signals.

2.3 Conclusions of the Chapter

1. The prevalence and frequency of premature ventricular contractions as well
as atrial �brillation has been increasing because of the ageing population.

2. Premature contractions may be both the symptom of the disease, e.g.,
myocardial infarction, or its cause, e.g., cardiomyopathy. Frequent pre-
mature ventricular contractions, especially in subjects su�ering from heart
disease and severe symptoms, must be investigated, and treatment should
be considered.

3. Atrial �brillation tends to progress without noticeable symptoms and may
become incurable with serious comorbidities, e.g., stroke and myocardial
infarction; therefore means for early detection and management are of
major interest.

4. Cardiac arrhythmias are usually detected and evaluated by using electro-
cardiogram recordings; however, more convenient and cost-e�ective ap-
proaches are needed.
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3 OVERVIEW OF PPG-BASED METHODS FOR ARRHYTHMIA

DETECTION

3.1 Introduction to Photoplethysmography

3.1.1 Principles of Photoplethysmography

Photoplethysmography is a relatively simple, optical, non-invasive tech-
nique, primarily used for the monitoring of local hemodynamical changes in the
vascular system by illuminating tissues with the light of a certain wavelength.
The principle of photoplethysmography utilizes the property of blood to absorb
light more strongly compared to the surrounding tissues. The photoplethysmog-
raphy sensor is composed of a light-emitting diode (LED) light source and a
photodetector (PD), usually a photodiode, serving the objective to receive the
unabsorbed light. The intensity of the light received by PD, changes the output
voltage signal which is proportional to the volume of blood in the blood vessels
pumped during each cardiac cycle. This output voltage provides only a rela-
tive change in blood volume and, therefore, the exact amount of blood is not
quanti�ed.

Two main con�gurations of photoplethysmography sensors are employed
for PPG acquisition, namely, the re�ection and transmission modes. A detailed
illustration of these two con�gurations is demonstrated in Fig. 3.1.:
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Fig. 3.1. Principle of re�ection and transmission photoplethysmography as well as
the composition of the resulting PPG signal.

In the re�ection sensor con�guration, the light source and PD are posi-
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tioned next to each other. In this con�guration, PD receives the light which
is back-scattered or re�ected from blood vessels, tissue, bone, etc. The re�ec-
tion con�guration poses virtually no restrictions or problems associated with the
placement of the sensors; a variety of measurement sites can be used.

In the transmission con�guration, the light source and PD are positioned on
the opposite sides of the tissue, e.g., an earlobe is located between the light source
and the PD. In this con�guration, the light transmitted through the medium is
received by a PD which is spatially opposite the LED source. Clearly, in contrast
to the sensors with the re�ection con�guration, the application of a transmission
sensor is limited by the measurement site. The earlobe and the �nger are the
most common monitoring positions used with a transmission type sensor.

As seen in Fig. 3.1, a PPG signal is composed of several components, one
being alternating (AC) and the other being constant (DC) o�set. When light
propagates through biological tissues, it is absorbed by pulsatile arterial blood,
venous blood, bones, skin pigments and other surrounding tissues. Therefore, the
AC component corresponds to variations in the blood volume in synchronization
with the heart-beat. The DC component arises from the optical signals re�ected
or transmitted by the tissues and is determined by the tissue structure as well
as venous and arterial blood volumes. The DC component shows minor changes
with respiration. The basic frequency of the AC component varies with the heart
rate and is superimposed on the DC baseline. The PPG signal consists mainly
of the following components:

1. Arterial blood volumetric changes re�ecting the cardiac activity. Absorp-
tion due to pulsatile arterial blood (AC).

2. Venous blood volume changes resulting in a slow changing signal having
a modulatory e�ect on the PPG signal. Absorption due to nonpulsatile
arterial blood and venous blood (DC).

3. A DC component due to the optical property of the biological tissue. Ab-
sorption due to skin, bone and tissue.

Originally, photoplethysmography employs two LEDs emitting light at dif-
ferent wavelengths, one being red (660 nm), the other being infrared (900�
940 nm). These wavelengths are the most suitable for the use in the cases of
oxygen saturation (SpO2), since oxygenated hemoglobin absorbs more infrared
light and allows more red light to pass through. However, this works in the
opposite direction for deoxyhemoglobin. Deoxyhemoglobin absorbs more red
light and allows infrared light to pass through. As a result, the pulse oximeter
needs to have both red and infrared light emitters so that to estimate the SpO2.
However, red and, especially, infrared light penetrates deep into the tissue and,
for certain applications, such as the heart rate measurement, this may result in
additional sources of unwanted noise, since the deeper the light goes, the more

42



tissue re�ects and scatters it. Various studies showed that green light penetrates
deep enough to sense pulsatile blood variations; however, it is not deep enough
for the light to be a�ected by deeper tissues (Lee et al., 2013 [28]; Matsumura
et al., 2014 [111]). Figure 3.2 shows skin penetration depth by light at di�erent
wavelengths (Bashkatov et al., 2005 [112]).
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Fig. 3.2. Optical penetration depth of skin σ as a function of wavelength λ ranging
from 400 nm to 1000 nm (Bashkatov et al., 2005 [112]).

In order to be e�ective, the photoplethysmography sensor must be located
on the body at a site where the transmitted light can be readily detected. Ta-
ble 3.1 shows PPG measurement sites:

3.1.2 Waveform of PPG

The morphology of the PPG waveform di�ers from subject to subject and
depends on various factors starting from the location where and how the PPG
sensor is attached and ending with the physiological peculiarities, such as vascu-
lar compliance. The pulsatile (AC) component of the PPG signal is comprised
of individual pulses, associated with a single cardiac cycle. The formation of
typical PPG pulse morphology is divided into two major phases: the anacrotic
phase, associated with the systole and the rising edge of the pulse and the cat-
acrotic phase associated with the diastole and the falling edge of the pulse. The
principle of PPG pulse formation is illustrated in Fig. 3.3. During the anacrotic
phase, the direct pulse wave (WD) propagates from the ventricle along the aorta
to the periphery, whereas, during the catacrotic phase, the pulse wave upon be-
ing re�ected from the periphery (WR), mainly in the lower body, returns back.
The sum of WD and WR waves results in the PPG pulse with the gap between
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Table 3.1. List of sites suitable for the measurement of photoplethysmogram for
re�ection and transmission sensor con�gurations

No. Measurement
site

Re�ection
con�guration

Transmission
con�guration

1 Wrist Y N
2 Finger Y Y
3 Upper arm Y N
4 Toe Y Y
5 Earlobe Y Y
6 Ear canal Y N
7 Cheek Y Y
8 Tongue Y Y
9 Neck Y N
10 Forehead Y N
11 Upper eyebrow Y N
12 Temple Y N
13 Nasal septum Y Y
14 Vagina Y N

* Y/N stands for YES/NO

the two waves called the dicrotic notch. A dicrotic notch, as shown in Fig. 3.3,
is usually seen in young subjects with healthy arteries and is related to the
compliance of the arteries.

WR

WD

R
ef

le
ct

io
n

s WD

WR

Time

Branchial artery

R
ad

ia
l a

rt
er

y

PPG pulse

Dicrotic 
notch

Fig. 3.3. Formation of PPG pulse waveform (partially based on Baruch et al., 2011
[113]).

Due to the advancing age and/or increasing arterial sti�ness, the elastic-
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ity and damping function gradually degrades. Therefore, both the direct and
the re�ected wave, WD and WR, respectively, propagate faster and tend to get
closer. The decreasing delay of the returning wave results in an increasing over-
lap and reduce the gap between the two waves, �nally declining the dicrotic
notch. Figure 3.4 demonstrates the formation of the PPG pulse depending on
the age and/or arterial sti�ness.
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Fig. 3.4. Formation of the PPG pulse depending on the age and arterial sti�ness: (a)
direct and re�ected waves, (b) resulting pulse.

Since the PPG waveform re�ects the hemodynamics in the vascular sys-
tem, various heart rhythm irregularities also change the morphology of the PPG
signal. Figure 3.5 demonstrates the morphology of the PPG waveform during
the normal sinus rhythm and various arrhythmias, namely, premature beats and
atrial �brillation, together with the synchronously recorded ECG signals as the
reference.

During the normal sinus rhythm, the ventricular �lling time remains rela-
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Fig. 3.5. Segments of synchronously recorded ECG and PPG signals during sinus
rhythm, premature beats and atrial �brillation.

tively constant as is the cardiac output. However, during arrhythmia (premature
beats or atrial �brillation), beat-to-beat intervals are irregular, resulting in the
varying ventricular �lling time. Early heart contraction causes the ventricle to
�ll less, thus decreasing the cardiac output and resulting in a decrease of the
PPG amplitude. On the contrary, during a prolonged interval between two car-
diac cycles, e.g., in the case of a compensatory pause, the ventricles are allowed
to �ll with more blood, thus producing an increase in the PPG amplitude.

3.1.3 Artifacts in PPG

It is widely acknowledged that the acquisition of PPG is sensitive and
susceptible to various noise sources which introduce signal corruptions, referred
to as artifacts. Artifacts limit the accuracy of the parameter extraction from
the PPG signal or even make the extraction impossible thus leading to misin-
terpretations or false alarms, e.g., due to the erroneously calculated heart rate.
Figure 3.6 shows segments of the synchronously recorded ECG and partially cor-
rupted PPG signals. Generally, artifacts are induced by the motion of the sensor
relative to the skin thus altering and a�ecting the paths of the propagating light
due to the following reasons:
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1. Deformation and movement of both external and inner tissue.

2. Blood movement, unrelated to the cardiac cycle.

3. Alternating distance between the skin and the sensor.

4. Varying contact pressure between the skin and the sensor.

5. Ambient light interference.

(a)

Time, s

Artifact

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

(b)

Fig. 3.6. Synchronously recorded segments of: (a) ECG (b) PPG with artifacts.

Other types of artifacts may be induced by the sources other than the
sensor movement, of which the most common ones are:

1. Respiratory artifacts, occurring due to the changes in the thoracic volume
during breathing.

2. Power line interference, i.e., 50/60 Hz depending on the country (Elgendi,
2012 [114]).

3. Decrease or absence of PPG amplitude due to dirty or scratched sensor,
sensor positioning, irregular heart contractions (ventricular �brillation),
low blood perfusion (caused by low ambient temperatures, hypotension,
vascular occlusion, or other pathologies).

The e�ect of artifacts on the PPG is devastating, since artifacts overlap
with the frequency band of the PPG signal. The baseline wandering, e.g., due
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to respiration is in the frequency range of 0.04�2 Hz, while the motion-induced
artifacts may occur in the frequency range of 0.1�10 Hz. Therefore, simple
�ltering techniques such as band-pass �ltering can not signi�cantly improve the
quality of the corrupted PPG, since these techniques are only suitable for the
removal of non-overlapping noises, e.g., baseline wandering (partially) and power
line interferences.

The in�uence of artifacts can be reduced by suitably attaching the sensor
to the skin in order to restrict the excessive movement as well as by position-
ing it perpendicularly to the skin. The PPG probe should be held securely in
place to minimize the probe-tissue movement artifacts. Other techniques used
to improve the quality of PPG signals rely on digital signal processing. The
application of adaptive �ltering techniques showed promising results in the re-
moval of the overlapping noises by using the accelerometer signal as a motion
reference (Warren et al., 2016 [115]; Wijsho� et al., 2017 [116]). However, neither
of the previously outlined artifact reduction means manages to ensure the ac-
quisition of a good quality PPG signal. Therefore, the automatic signal quality
assessment and detection of motion artifacts, especially their separation from
the good quality recordings, is highly desirable.
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Fig. 3.7. (a) Reference ECG signal together with its spectrum bellow, (b) PPG
signal with marked temporal features (preceding and current intervals pm�1 and pm,
respectively) and amplitude features (rising and falling edges arm and afm, respectively)
and spectral features bellow (here the largest peak correspond to the average heart

rate in the PPG segment).
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3.1.4 Parameterization of PPG

Despite di�erent origins of ECG and PPG signals, one being electrical, and
the other being mechanical, similar parameters could still be derived and cal-
culated solely from the PPG signal, e.g., the intervals between successive heart
cycles, referred to as peak-to-peak (PP) intervals. PP intervals are equivalent to
the ECG RR intervals, since R wave corresponds to the contraction of ventri-
cles, whereas PPG pulse maxima corresponds to the systole. Figure 3.7 shows a
number of parameters which could be obtained from the PPG signal. We should
note that the PPG signal lags behind the ECG signal due to the time required
for the pulse wave to propagate after the electrical activation of ventricles. Fur-
thermore, the morphology of the PPG signal is less complex compared to that
of ECG signals, which is clearly visible by comparing the spectra of ECG and
PPG signals. The advantage of less complex signal morphology is that it allows
the sampling of the signal while using lower sampling frequencies, thus reducing
the amount of data and time for preprocessing and processing.

3.1.5 Devices and Applications of Photoplethysmography

Due to its wearablity, non-invasiveness, low-cost and versatility, photo-
plethysmography has been applied in many di�erent clinical and non-clinical
settings. Some possible applications of photoplethysmography are listed in Ta-
ble 3.2:
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Table 3.2. Applications of photoplethysmography in clinical and non-clinical practice

No. Application

Clinical physiological monitoring:

1 Blood oxygen saturation (SpO2) measurement
2 Heart rate measurement
3 Blood pressure measurement
4 Cardiac output measurement
5 Respiration monitoring
6 Arrhythmia monitoring
7 Non-invasive haemoglobin concentration monitoring
8 Sleep apnea monitoring
9 Remote vital sign monitoring (via camera)

Vascular system assessment:

10 Arterial compliance and ageing assessment
11 Venous assessment
12 Endothelial function assessment
13 Microvascular blood-�ow monitoring
14 Tissue viability assessment
15 Would healing monitoring
16 Vasospastic condition assessment

Autonomic nervous system function assessment:

17 Vasomotor function and thermoregulation assessment
18 Heart rate variability assessment
19 Blood pressure variability assessment
20 Orthostasis intolerance assessment
21 Neurology and other cardiovascular variability assessment

3.2 Available PPG-based Approaches and Strategies for Detection of

Premature Ventricular Contractions and Atrial Fibrillation

3.2.1 Background of Arrhythmia Detection using Photoplethysmography

Photoplethysmography has been suggested for arrhythmia detection by Shel-
ley, 2007 [117]. On the contrary to Holter monitors, photoplethysmography�
based devices o�er a cheaper and a more convenient way for daily life screening,
since no electrodes are needed (Allen, 2007 [118]). In contrast to ECG electrodes,
photoplethysmographic sensors are more patient�friendly since the sensor can
be attached to a �nger (Suzuki et al., 2009 [119]), to be integrated into ear-
phones (Wang et al., 2007 [120]; Tamura et al., 2014 [121]), implemented in a
forehead band (Tamura et al., 2014 [121]; Li et al., 2012 [122]) or used as a wrist
sensor (Li et al., 2012 [122]; Haahr et al., 2012 [123]; Tamura et al., 2014 [121]).
Therefore, so far, photoplethysmography has been considered for the detection
of premature beats (Suzuki et al., 2009 [119]; Gil et al., 2013 [124]; Drijkoningen
et al., 2014 [125]; Polania et al., 2015 [126]) and for the detection of AF by using
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a smartphone camera (Lewis et al., 2011 [127]; McManus et al., 2013 [128]; Lee
et al., 2013 [28]; Chan et al., 2016 [30]; Freedman, 2016 [31]).

3.2.2 Available Databases of Biomedical Signals for Testing and Validation of
Arrhythmia Detectors

We may wonder why we should simulate PPG signals when they can be
easily recorded? An important advantage of the simulated signals is that they
can be annotated by design, thus avoiding the time-consuming manual process
which is very costly when annotating day-long signals. In fact, simulated PPG
signals can, at least to some extent, compensate for the current lack of annotated,
public PPG databases. Such databases are urgently needed to facilitate the on-
going development and testing of PPG-speci�c AF detectors (due to the lack
of guidelines for PPG-based arrhythmia diagnosis, the annotation of arrhyth-
mias in the PPG today has to be based on a simultaneously acquired ECG).
Another advantage is that simulated signals allow control of the signal-to-noise
ratio, which acquired signals do not o�er � this is an aspect which is critical to
investigate in mHealth applications (Steinhubl et al., 2016 [129]). To the best
of our knowledge, only the Physionet MIMIC, MIMIC II and the University
of Queensland Vital Signs Dataset (UQVSD) databases feature synchronously
recorded, but unannotated, PPG and ECG signals (Moody et al., 1996 [130];
Goldberger et al., 2000 [131]; Saeed et al., 2011 [132]; Liu et al., 2012 [133]). Given
that Physionet provides many ECG databases with annotated arrhythmias (i.e.,
MIT�BIH Arrhythmia, MIT�BIH Atrial Fibrillation, MIT�BIH Supraventricu-
lar Arrhythmia), these public databases may be employed to produce simulated
PPG signals.

Several approaches have been proposed for modeling a single PPG pulse,
most of them being based on �tting multiple Gaussian waveforms (Wang et al.,
2013 [134]; Liu et al., 2014 [135]). Gaussian waveforms have also been combined
with the gamma waveform to account for the skewed shape of PPG pulses (Huang
et al., 2013 [136]). Yet another approach relies entirely on the log-normal wave-
form (Huotari et al., 2011 [137]).

While there have been attempts to concatenate individual PPG pulses
into a sequence, none of them is intended for modeling arrhythmia. Cli�ord
et al. (Cli�ord et al., 2004 [138]) proposed a realistic model of blood pressure
signals, intended for assessing noise performance of biomedical signal processing
techniques. The model developed by Nabar et al., 2011 [139] is intended for a
resource-e�cient wireless PPG monitoring system where the received PPG signal
is modeled according to the received PPG parameters. The model by Martin-
Martinez et al., 2013 [140] was developed for the tracking of physical activity
so that to obtain statistics of clinical parameters, and to recover corrupted or
missing signal epochs. The modeling of hemodynamics by Scarsoglio et al., 2014
[141] is aimed at investigating the impact of AF on the cardiovascular system.

51



3.2.3 Automatic Detection of Premature Ventricular Contractions by using
Photoplethysmography

The study by Suzuki et al., 2009 [119] is among the �rst attempts that have
been published on the topic of automatic PPG-based premature beat detection.
The algorithm makes use of the peak-to-peak (PP) intervals and the pulse ampli-
tude obtained from the PPG signal thus seeking to distinguish between irregular
rhythm stemming from arrhythmia and that caused by the artifact. The goal of
this study was to detect the arrhythmic pulses possessing comparable detection
accuracy to that of ECG signals recorded by using the Holter monitor. Wearable
wristband type re�ection photplethysmography sensor with sensor head worn
on the �nger was employed to record the PPG signal. The integrated 3-axis
accelerometer was used to record the movement. Since the ECG signal was used
as a reference, the 2-lead ECG and the wearable photplethysmography sensor
were synchronously measured during the night.

The authors of the above outlined study analyzed the correlation between
synchronously measured ECG and PPG signals when arrhythmic heartbeats oc-
curred. PP intervals obtained from the PPG can be considered equivalent to the
RR interval obtained from ECG, provided that the physiological state is static.
Suzuki et al., 2009 [119] noted that in the case of the irregular RR intervals caused
by arrhythmia, the amplitude of PPG pulses also varies and it is important to
consider the change of the pulse amplitude due to the irregular pulse when de-
veloping the irregular pulse detection algorithm. When the irregular interval is
shorter than the normal interval, the amplitude of the irregular pulse is smaller
than that of the normal pulse. This is because the duration of the ventricular
diastole is shorter owing to the shorter RR interval thus causing blood volume
in the ventricle to decrease, and consequently, decreasing the stroke volume. In
contrast, when the irregular interval is longer than the normal interval, the am-
plitude of the irregular pulse is larger than that of the normal pulse. Irregularity
in extracted PP interval series is detected by calculating the ratios of the pre-
ceding and current PP intervals. Another features used to distinguish between
the irregular rhythm and the artifact is de�ned as AIR (amplitude and interval
ratio):

AIRj �
afj
pj
, (3.1)

where afj are the amplitudes of the falling edge, pj are PP intervals.

In case of an irregular pulse, AIR is almost a constant value. In contrast,
during artifacts, AIR varies, since artifacts have no regularity. Threshold values
η1 and η2 were determined empirically, by using data obtained from three sub-
jects. Therefore, premature beats are detected by employing a condition-based
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beat classi�cation:

Oj �

#
1,

pj�1

pj
¡ η1 & AIRj   η2,

0, otherwise,
(3.2)

where η1 = 1.1 and η2 = 0.55 are the threshold values for the interval ratio pj�1

pj
and AIRj , respectively.

The obtained results show that the irregular heartbeat detection algorithm
can discriminate between the pulse wave of irregular heartbeat and the pulse
wave with an artifact, e.g., body movement. Most of the artifact cases were
related to rolling over during sleep. It was also observed that the irregular pulse
detected by the algorithm is coincident with the irregular heartbeats detected
by an ECG. However, the addressed limitation of the algorithm is related to
irregular pulses with short intervals which could not be detected because their
amplitude was too small to detect the pulse trigger. Nevertheless, in other cases,
the algorithm is claimed to have a su�ciently high speci�city and the feasibility
to detect irregular heart beats without false alarms due to artifacts.

In order to test the performance of the algorithm and reveal the unad-
dressed drawbacks, this algorithm was implemented and tested with three com-
mon cases, namely, the PPG signal with premature beats, the PPG signal with
the rhythm of bigeminy, and the PPG signal corrupted with artifacts. The case
of successfully detected premature beats is demonstrated in Fig. 3.8:

Figure 3.9 shows synchronously recorded ECG and PPG signals during the
transition from the sinus rhythm to the rhythm of bigeminy, where every second
beat is premature beat.

In the case of the ECG signal during bigeminy, both short preceding and
longer succeeding intervals associated with the premature beat are available.
However, in the PPG signal, due to the low cardiac output of the early con-
tractions, the PPG pulse, associated with the premature beat, is absent and the
resulting interval is two times as long as the interval between two normal beats.
Therefore, the algorithm fails to detect bigeminy in the PPG. This is due to the
interval ratios, which were used to detect changes in the intervals. Since the
intervals between the adjacent beats in both the sinus rhythm and the rhythm
of bigeminy are of similar length, the ratios do not show any changes; they only
demonstrate the transition from the sinus rhythm to bigeminy.

As described earlier, PPG is more prone to artifacts induced by body move-
ment than the ECG signals. Suzuki et al., 2009 [119] claim that the algorithm
reduces the in�uence of the body movement; therefore, for the testing purposes,
the algorithm was applied on a PPG signal containing artifacts. Figure 3.10
shows the performance of the premature beat detector using the PPG signal
partially contaminated with artifacts and containing no premature beats, as
seen in the synchronously recorded ECG:
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Fig. 3.8. Signals during premature beats: (a) ECG, (b) PPG, (c) interval ratios, and
(d) amplitude and interval ratios (AIR).

Another attempt to detect premature beats was performed by Gil et al.,
2013 [124]. This study did not directly focus on the detection of premature beats
but rather used the detected premature beats to determine whether the PPG-
based detection could be used as an alternative to ECG-based detection of the
heart rate turbulence.

In contrast to Suzuki et al., 2009 [119], Gil et al., 2013 [124] concluded that
the inclusion of the pulse amplitude features did not improve the classi�cation
performance signi�cantly. The main reason is that the amplitude features are
correlated with the temporal features since the change in the pulse amplitude
is due to the change in the peak-to-peak interval, i.e., a short interval leads to
the reduction of the amplitude, whereas a longer interval leads to the increase of
the amplitude. The classi�cation of PVCs was performed by applying a linear
classi�er.

The sensitivity/speci�city of PVC classi�cation was found to be 90.5 %
/ 99.9 %, with an accuracy of 99.3 % thus suggesting that the classi�cation of
PVCs can be reliably performed from PPG signals. A serious limitation of the
algorithm, however, is that the PVCs which occurred within the 5 previous or
20 subsequent beats were excluded from further analysis. This suggests, that
frequent PVCs, episodes of begeminy, trigeminy, etc. could not be detected by
this approach.
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Fig. 3.9. Signals during bigeminy episode: (a) ECG, (b) PPG, (c) Interval ratios, and
(d) Amplitude and interval ratios (AIRk).

3.2.4 Automatic Detection of Atrial Fibrillation by using Photoplethysmogra-
phy

To this day, very few photoplethysmogram-based atrial �brillation detec-
tion methods have been developed. The �rst practical applications of PPG for
AF detection were proposed in McManus et al., 2013 [128] and Lee et al., 2013
[28]. These methods make use of the rhythm-based features derived from PPG
signals. The irregularity of the rhythm is estimated by applying the same basic
methodologies used for the ECG derived features, namely, the root mean square
of the successive di�erence (RMSSD), Shannon entropy (ShE), and sample en-
tropy (SE) (Tateno et al., 2001 [142]; Dash et al., 2009 [143]). The normalized
RMSSD is de�ned as:

NRMSSDk �

gffe 1

j � 1

l�1̧

j�1

ppj � pj�1q
2 l°l

j�1 pj
, (3.3)

where l is the length of PP intervals and ppjq is the j:th PP interval in the
analysis window of length l, j � 1, 2, .... Here l � 64 was used for the best AF
detection accuracy. The normalization of RMSSD is performed to account for
the various heart rates.
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Fig. 3.10. Signals in case of artifacts: (a) ECG, (b) PPG, (c) Interval ratios, and (d)
Amplitude and interval ratios (AIRk).

The Shannon entropy is de�ned as:

ShENk � �
Ņ

i�1

qi
logpqiqq

logp 1
N q

, qi �
Ni

l
, (3.4)

where N is the number of bins, and Ni is the number of beats in the i:th bin.
The best accuracy was obtained by using N � 16. The detection of AF is based
on the simple logical conditions relaying on two statistical criteria, namely the
�xed threshold values for NRMSSD and ShE:

Ok �

#
1, NRMSSDk ¡ η1 & ShEk ¡ η2,

0, otherwise,
(3.5)

where η1 � 0.115 and η2 � 0.55 are the threshold values for NRMSSD and
ShE, respectively, which correspond to the largest area under the ROC curves.

In this study, PPG signals were obtained using a by smartphone camera
on the subjects before (continuous AF) and after undergoing cardioversion (i.e.,
the rhythm is restored to the normal sinus rhythm). However, in order to test
the described methodology for other potential cases of use, it was implemented
and applied to a few di�erent and highly common situations, i.e., the PPG
signal during the normal sinus rhythm, the PPG signal during AF, the PPG
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signals during ventricular bigeminy, and PPG corrupted with artifacts, which
are presented in �gures 3.11, 3.12, 3.13, and 3.14, respectively. Figure 3.11
demonstrates the output of the AF detector when only the normal sinus rhythm
is present in the PPG segment:
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Fig. 3.11. Example of AF detector performance on PPG segment during the normal
sinus rhythm: (a) ECG, (b) PPG, (c) peak-to-peak intervals in seconds, (d)

NRMSSDk, (e) ShEk.

During the normal sinus rhythm, the intervals between successive beats
are of relatively constant, no irregularity is detected and therefore the output
of the AF detector remains bellow the detection threshold. However, notable
di�erences between successive beats occur during arrhythmia, such as AF. Fig-
ure 3.12 shows the performance of the AF detector on the PPG segment during
continuous AF:

In this case, AF was detected successfully. However, in addition to AF,
other types of arrhythmia may also be present, therefore Fig. 3.13 shows the
performance of the AF detector on PPG containing both sinus rhythm and
episodes of ventricular begiminy:

Bigeminy introduces rhythm irregularity which forceNRMSSDk and ShEk
values to raise above the threshold thus causing false alarms. However, the main
source of false alarms when using PPG signals is artifacts. It is claimed that
the use of a smartphones' camera to record the PPG signal partially bypasses
the artifact problem since, during the recording, subjects were in the lying po-
sitions, breathing was assisted by the physician, and the recordings per se, were
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Fig. 3.12. An example of AF detector performance on PPG segment during AF: (a)
ECG, (b) PPG, (c) Peak-to-peak intervals in seconds, (d) NRMSSDk, (e) ShEk.

quite short. If the subjects were prone to tremor, other potential recording sites
were used instead of a �nger, e.g., a leg or a forearm. However, there were no
other measures taken to prevent false alarms in case of artifacts; therefore, the
performance of the AF detector was also tested on a PPG segment corrupted
with artifacts (see Fig. 3.14):

McManus et al., 2013 [128] claimed that the combination of NRMSSD and
ShE shows excellent sensitivity (Se), speci�city (Sp), and accuracy (Ac) when
using only the rhythm-derived features from the PPG signal. The comparison
reference was the detection of AF by using a standard 12-lead ECG. However,
as the results with PPG signals containing other arrhythmia and arifacts show,
the method is only applicable when PPG signals are of good quality and if only
two rhythm types are present, namely, the AF and the sinus rhythm. Another
limitation of this study is due to the fact that NRMSSD and ShE threshold
values were obtained from the ECG RR intervals (Physionet MIT�BIH AF and
MIT�BIH NSR databases) omitting the peculiarities because of a di�erent origin
of ECG and PPG signals. This is why such an approach could not be used for
long-term screening of the AF.
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Fig. 3.13. Example of AF detector performance on PPG segment with bigeminy
episodes: (a) ECG, (b) PPG, (c) peak-to-peak intervals in seconds, (d) NRMSSDk,

(e) ShEk.
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Fig. 3.14. Example of AF detector performance on PPG segment with artifacts: (a)
ECG, (b) PPG, (c) peak-to-peak intervals in seconds, (d) NRMSSDk, (e) ShEk.
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3.3 Conclusions of the Chapter

1. Photoplethysmography is a low cost, simple and portable technology, which
is employed in a wide range of commercially available medical devices for
measuring the oxygen saturation and the heart rate, for assessing the arte-
rial compliance, etc. The latest investigations demonstrate great potential
for the use of photoplethysmography in the detection of cardiac arrhyth-
mias. However, the main challenges concerning the acquisition and analysis
of photoplethysmogram signals are motion-induced artifacts.

2. Currently available photoplethysmogram-based algorithms for the detec-
tion of premature beats and atrial �brillation are not suitable for ambula-
tory long-term screening due to lack of measures taken to reduce the rate
of false alarms during occurrence of other types of arrhythmia, such as
bigeminy and, especially, signals corruptions, such as artifacts.

3. Databases with synchronously recorded ECG and PPG signals are needed
for testing and evaluation of PPG based arrhythmia detection algorithms.
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4 PROPOSEDMETHODS FOR PPGMODELING AND PPG-BASED

ARRHYTHMIA DETECTION

4.1 Modeling of PPG during cardiac arrhythmia

This chapter introduces a novel phenomenological model for simulating
PPG signals during arrhythmia (Solo²enko et al., 2017 [144]). The model uses
the RR interval series as input for generating a PPG signal. The model accounts
for the presence of premature beats by introducing the amplitude and time scale
factors which modify the pulse width and amplitude, thus making it possible to
simulate ectopic beats and certain rhythms such as bigeminy known to cause
false alarms in RR interval-based AF detection.

The RR interval series obtained from an annotated ECG recording serves
as the input to the proposed simulation model, see Fig. 4.1. The model consists
of two main parts, namely, modeling of a single PPG pulse and concatenation
of pulses into a connected signal.

Modeled PPG

RR intervals

ECG

PPG pulse sequence 
generator

PPG pulse model

PPG model

Fig. 4.1. Block diagram of the proposed model for simulation of PPG signals.
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4.1.1 Modeling of a Single PPG Pulse

PPG pulse is modeled as a linear combination of three functions�one log-
normal waveform and two Gaussians�together accounting for direct and re-
�ected pulse waves (Baruch et al., 2011 [113]). Here, the log-normal function is
de�ned as

ϕ1pt;m,σ1q �

$'''''&
'''''%

1

t
a

2πσ21
e
�
pln pt{mqq2

2σ21 , t ¡ 0,

0, t ¤ 0,

(4.1)

where t is time, m is the scale parameter, and σ21 is the shape parameter. The
Gaussian waveform is de�ned by

ϕipt;σiq �
1b

2πσ2i

e
�
t2

2σ2i , i � 2, 3, (4.2)

where σ2i is the width parameter. Then, the PPG pulse is modeled as a linear
combination of weighted, time-shifted, and time-scaled versions of ϕ1pt;m,σ1q,
ϕ2pt;σ2q, and ϕ3pt;σ3q, i.e.,

ϕpt;θq � w1ϕ1pt� τ1;m,σ1q �
3̧

i�2

wiϕipt� τi;σiq � a, (4.3)

where a denotes the DC o�set. For convenience, all the model parameters are
merged into the vector

θ � rw1, w2, w3, τ1, τ2, τ3,m, σ1, σ2, σ3, as. (4.4)

The parameters of the PPG pulse are estimated by nonlinear least squares �t-
ting (Coleman et al., 1996 [145]),

J pθq �

» 8
�8

pyptq � ϕpt;θqq2 dt, (4.5)

θ̂ � arg min
θ

J pθq , (4.6)

where θ̂ is the vector minimizing the di�erence between the PPG pulse template
yptq and the model PPG pulse ϕpt;θq. Prior to minimization, each PPG template
is normalized to unit amplitude.

Since pulse morphology varies considerably depending on such factors as
age and medical condition, a set of template PPG pulses, displayed in Fig. 4.2
is employed.
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Fig. 4.2. Template PPG pulses according to Dawber et al. (Dawber et al., 1973 [146]).
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Fig. 4.3. Steps required to model a PPG signal. (a) ECG with detected R peaks and
corresponding RR intervals, (b) modeled systolic and diastolic parts combined into a
single pulse, and (c) the resulting, connected PPG signal. It should be noted that the
two pulses with lower amplitudes relate to premature beats. Arrows point to pulses

associated with R peaks.

4.1.2 Contextualization of a single PPG pulse

PPG pulse is composed of the systolic part and the diastolic part, where
the width of each part depends on the adjacent RR intervals. For the k:th pulse,
two time scale factors are introduced, both of which are inversely proportional
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to RR intervals,

βs,k �

$''''&
''''%

1

rk
,

rk

rk�1
¤ η0,

1

rk�1
, otherwise,

(4.7)

βd,k �

$''''&
''''%

1

rk�1
,

rk

rk�1
¤ η0,

1

rk
, otherwise,

(4.8)

where rk denotes the RR interval preceding the k:th pulse. Threshold η0 deter-
mines whether the current beat is premature.

Another factor is the PPG pulse amplitude related to the ventricular �ll-
ing time according to the length of the RR interval. For example, in the sinus
rhythm, the ventricular �lling time does not change much from beat to beat,
which leads to negligible pulse amplitude variations. On the contrary, a prema-
ture beat causes the diastole to be shorter thus reducing the amplitude of the
resulting pulse. The proposed model assumes that the amplitude of the pre-
mature pulse changes exponentially. Since a premature beat is followed by a
compensatory pause, su�ciently long to �ll the ventricles with extra blood, the
subsequent pulse will have a larger amplitude.

The amplitude of the PPG pulse is assumed to be proportional to rk unless
the beat is premature when the relationship between the length of the current
RR interval whereas the diastolic period can be characterized by an exponential
function (Sarnari et al., 2009 [147]). The pulse amplitude is given by

αk �

$''&
''%

0.58 � r1.32k ,
rk
rk�1

¤ η0 or
rk�1

rk
¥ η1,

rk, otherwise.

(4.9)

where threshold η1 determines whether the subsequent beat is premature thus
allowing the decrease in amplitude.

The k:th PPG pulse denoted sa,kptq is put into context by scaling the
amplitude of ϕpt; θ̂q with αk and the width with either βs,k or βd,k:

sa,kptq �

$''&
''%
αk � ϕpβs,kpt� tpq; θ̂q, �8   t   tp,

αk � ϕpβd,kpt� tpq; θ̂q, tp ¤ t   8,

(4.10)
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where tp is the time for the largest positive peak in ϕpt; θ̂q. Finally, the sampling
of sa,kptq is performed by

skpnq � sa,kpt � nT q, n � 0, 1, . . . (4.11)

where T denotes the length of the sampling interval.

(a)

(b)

Time, s

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

(c)

Fig. 4.4. Model PPG signal composed of Type 1 pulses (cf. Fig.4.2) at SNRs equal
to (a) 20 dB, (b) 15 dB, and (c) 10 dB.

4.1.3 Modeling of a Connected PPG Signal

A connected, discrete-time model signal xpnq is generated by placing con-
textualized PPG pulses at the heartbeat occurrence times δk obtained from the
RR interval series and adding noise vpnq:

xpnq �
Ķ

k�1

skpn� δkq � vpnq, (4.12)

where K denotes the number of pulses in the connected signal. The steps re-
quired to produce a simulated signal are demonstrated in Fig. 4.3.

Noise vpnq is generated by �ltering the white noise, where the �lter is
determined by the spectral properties of the motion artifacts extracted from PPG
signals in the MIMIC database. By using the above simulation model, a noise-
free signal is generated from the RR intervals of the segment with the artifact.
The artifact is extracted by canceling the model signal from the observed signal
while using a normalized least-mean squares (NLMS) �lter. Then, the extracted
artifact serves as the desired input to the NLMS �lter, whereas the white noise is
the reference input. The �lter output is a signal resembling the extracted artifact.
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Fig. 4.5. Synchronously recorded ECG and PPG signals from the MIMIC database
compared to the simulated PPG signals during atrial �brillation, sinus rhythm with
atrial premature beats, and sinus rhythm with ventricular bigeminy. The bottom row
shows RR intervals and peak-to-peak (PP) intervals of the real and modeled PPG

signals, respectively.

The resulting impulse response of the NLMS �lter is used for producing vpnq. A
connected model signal is displayed for di�erent SNRs in Fig. 4.4.

Examples of model and real PPG signals during AF, premature atrial beats,
and ventricular bigeminy are presented in Fig. 4.5. It is obvious that the model
signals are similar to the real ones, also when rhythm disturbances occur. Fur-
thermore, the di�erence between RR and the corresponding peak-to-peak (PP)
intervals is observed, especially during the rhythm with ventricular bigeminy,
while retaining the similarity between PP intervals in real and model PPGs.

4.2 PPG-based Detection of Premature Ventricular Contractions

In this chapter, a method involving PPG pulse power-derived features in
addition to the temporal features for the detection of premature ventricular
contractions is introduced. An important property of the proposed method is
that the temporal features are normalized according to the preceding heart rate
estimated by combining temporal preprocessing and spectral analysis. Hence,
di�erently from the previous studies, this solution allows detecting PVCs even

66



during an episode of bigeminy. In addition, an artifact detector was implemented
in order to reduce the number of false alarms.

It is well-known that the alternating part of the PPG is proportional to
the peripheral blood volume changes (Peper et al., 2007 [148]). Premature con-
tractions result in reduced ventricular �lling diminishing the peripheral pulse
amplitude (Zheng et al., 2008 [149]). Therefore, the PPG pulses during PVC
may become hardly recognizable (Fig. 4.6 (a)), or may still have a su�cient am-
plitude for peak detection (Fig. 4.6 (b)). These two types of premature pulses
in the PPG are denoted as P 1 and P 2, respectively.
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Time, s
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Fig. 4.6. Examples of PVC pulse types in PPG together with reference ECG: (a)
PPG pulses during normal sinus rhythm (labeled as N) with a single PVC that is not
followed by any observable pulse (labeled as P 1), (b) a single PVC characterized by a
small pulse amplitude (labeled as P 2), (c), consecutive type P 1 pulses (bigeminy), (d)
bigeminy with both PVC pulse types. In this particular example, ECGs and PPGs
were preprocessed with zero-phase band-pass �lters having cut-o� frequencies of

0.05�150 Hz and 0.4�15 Hz, respectively.

The proposed method for PVC detection and classi�cation exploits tem-
poral (peak-to-peak) intervals (PPs) and power-derived (the power ratios, PRs)
features obtained for each PPG pulse. The method is composed of 3 major parts:
PPG preprocessing, feature extraction, and classi�cation (see Fig. 4.7).
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components removed.

4.2.1 Preprocessing and Feature Extraction

In order to minimize high frequency noise and baseline wandering, PPGs
are preprocessed by using low-pass and high-pass �nite impulse response (FIR)
�lters with 5 Hz and 0.4 Hz cut-o� frequencies, respectively, thus resulting in
signal sbpk (Fig. 4.7 block 1). These cut-o� frequencies correspond to approximal
maximal and minimal physiological heart rates. A 12 s sliding analysis win-
dow with 50% overlap is used for feature extraction (Fig. 4.7 block 2). Positive
peaks of the preprocessed PPG are detected by using threshold crossing tech-
nique (Fig. 4.7 block 3). Then, a series of operations are applied (Fig. 4.7 block
4) for the estimation of a normal heart rate (fNHR) (see Fig. 4.8).
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function

bp
ns

Fig. 4.8. Block diagram of the normal heart rate estimator. Here, sbpk is a 12 s
segment of the preprocessed PPG.

When estimating fNHR, it is crucial to reduce the in�uence of the impulse
noise, i.e., the noise of a higher amplitude than PPG, which may be falsely asso-
ciated to fNHR during spectral analysis. First, PPG is clipped in the empirically
determined range of �0.7std of the preprocessed PPG, and smoothed by apply-
ing a moving average �lter. Then, the �rst derivative of the resulting PPG is
calculated. The �rst derivative acts as a high pass �lter that emphasizes higher
frequency components of the PPG. In addition, the 1st derivative is particularly
useful when PPG segments contain bigeminy episodes which result in nearly 2
times lower PPG pulse rates compared to a normal rhythm (see Fig. 4.6 (c)).
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Next, fNHR is estimated by taking the frequency at the maximal amplitude
of the power spectral density (PSD) function. Finally, outliers are removed by
�ltering the array of fNHR using a 3rd order median �lter.

Normally, the heart rate is inversely related to PP intervals. However,
for a speci�c PVC type (cf. Fig. 4.6 (a) and (c)), the length of PP can be
approximately twice the length of the interval between the subsequent PPG
pulses occurring during the normal rhythm. Therefore, in order to make the PPs
heart rate independent, PP-related features are normalized before applying them
to the classi�er. One way to normalize PP intervals is to calculate the ratio of the
current and the mean values of the intervals (Gil et al., 2013 [124]). However, the
former normalization principle is sensitive to an erroneously detected PP value,
i.e., during bigeminy or artifacts. Hence, PP-related features are normalized
(Fig. 4.7 block 5) with respect to fNHR:

PPk �

�
p k � p k�1

�
fNHR

fs
, (4.13)

where k is the PP number, pj is an array of the index value of the detected
positive peaks, fs is the sampling frequency (Hz), and fNHR is the normal heart
rate (Hz). Normalized PP intervals are close to 1 during the normal heart
rhythm, yet they take either lower or higher values during PVCs.

The second high-pass FIR �lter is characterized by a variable cut-o� fre-
quency (Fig. 4.7 block 6), and is employed for the purpose of extracting higher
frequency components of PPG (from fNHR to 5 Hz). The cut-o� frequency is ad-
justed according to the current value of fNHR. Then, the resulting signal is used
as a reference input to a pre-whitened recursive least squares (RLS) adaptive �l-
ter (Fig. 4.7 block 7) (Douglas, 2000 [150]). The order and the forgetting factor
of RLS �lter were set to 10 and 0.999, respectively. Given that PPG pulses dur-
ing PVCs are composed of lower frequency components compared to the normal
rhythm, subtraction of higher frequencies produces signal safk consisting solely
of premature pulses. Therefore, the amplitude of PVCs is not a�ected, while
the PPG pulses are suppressed considerably during the normal heart rate (see
Fig. 4.9 (c)).

The power ratios (PRs) are computed in segments between two adjacent
PPG pulses by involving both preprocessed PPG sbpk and signal safk :

PRk �

N°
n�1

�
safk pnq � safk

	2
N°
n�1

�
sbpk pnq � sbpk

	2 , (4.14)

where k is the segment number, N is the segment length (total samples in the

PP interval), safk is the mean amplitude of samples in safk pnq, and sbpk is the
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mean amplitude of samples in sbpk pnq. Since the PPG amplitude is markedly
suppressed in normal beats, power ratios PR take lower values than those in
PVCs.

4.2.2 Classi�cation

Feed-forward arti�cial neural network (ANN) with either linear or non-
linear outputs was investigated for the classi�cation of individual PPG pulses (see
Fig. 4.10).
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Fig. 4.10. Block diagram of the ANN-based PPG pulse classi�er. Here, I stands for
ANN inputs, V is the input and hidden layers connecting weights, V b stands for the
biases of hidden neurons, W represents the hidden and output layers connecting

weights, W b denotes the biases of the neurons in the output layer, and C stands for
the outputs of ANN (classes).

Since each individual PPG pulse is described by 3 intervals (preceding,
current and subsequent), various interval combinations are feasible, therefore it
is reasonable to distinguish many classes (i.e., 10, see Table 4.1) in order to reduce
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the misclassi�cation rate. These 10 classes (Fig. 4.7 block 9) are further grouped
into 3 super-classes denoted by P 1, P 2 and N , respectively (Fig. 4.7 block 10).
The full list of classes and super-classes is presented in Table 4.1.

Table 4.1. PPG pulse classi�cation into (a) 10 classes and (b) 3 super-classes
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The number of neurons in a hidden layer of ANN was chosen empirically
and was set to 40. The back-propagation method was used for training (Vogl
et al., 1988 [151]). In order to cope with the over�tting, small random noise
was added to each of the inputs (Piotrowski et al., 2013 [152]). Both ANN
and back-propagation learning method were implemented in Mathworks, Inc.
MATLABTM environment.

4.2.3 Artifact Detection

Motion and tissue deformation induced artifacts are a crucial issue hinder-
ing the development of arrhythmia detectors based on PPG. In order to reduce
the number of false alarms due to falsely detected pulses, an artifact detector is
implemented.

The process of artifact detection is illustrated in Fig. 4.11. In the analysis
window, artifacts are �agged with respect to the ratio, obtained by dividing the
clipped PPG by the preprocessed PPG (Fig. 4.11 (a)). Since the clipped PPG
has a lower amplitude, the ratio approaches to 0 when artifacts occur. PPG
is �agged as an artifact whenever the empirically determined threshold exceeds
0.3. In addition, four pulses before and after the artifact are excluded from the
classi�cation.

4.2.4 Implementation of Online Premature Ventricular Contraction Detector

An online version of the PVC detector was implemented as the application
for the use in the Android operating system. A con�guration of the algorithm
employing PP features, ANN with non-linear outputs, and with blocks 6, 7 and 8
in Fig. 4.7 excluded, was selected for the implementation. PPG is transmitted to
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the smartphone via Bluetooth connection (see Fig. A3.1 in Appendix Appendix
A3). The same PPG signals from the MIMIC database are transmitted via
PC by using a National Instruments LabVIEWTM application which has the
capacity reading .mat �les and transmits PPG signals in the sample-by-sample
fashion. The PC and LabVIEWTM application simulates a patient wearing a
PPG sensor.

4.3 PPG-based Detection of Atrial Fibrillation

In this chapter, a photoplethysmography-based method for continuous screen-
ing for silent AF is proposed. The proposed detector o�ers a number of solutions
to reduce the false alarm rate including blocks of ectopic �ltering, bigeminy sup-
pression, sinus arrhythmia suppression, and signal quality evaluation. Moreover,
the proposed solutions can be applied to any RR interval analysis based AF
detector. The base for the AF detection part is an improved and modi�ed algo-
rithm by Petr
enas et al., 2015 [32].

A block diagram of the PPG-based AF detector is presented in Fig. 4.12.
The algorithm consists of four main parts, namely, preprocessing, feature extrac-
tion, artifact detection and AF detection which are described in detail below.

4.3.1 Preprocessing

PPG is mainly composed of lower frequency components, thus the higher
frequency noise is removed by using a low-pass �nite impulse response �lter with
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Fig. 4.12. Block diagram of the proposed AF detector.

a cut-o� frequency of 5 Hz. The baseline wander is removed with a �rst order
least mean squares adaptive �lter (Laguna et al., 1992 [153]).

4.3.2 Peak detection

PPG peaks are detected by using a peak detector with an adaptive thresh-
old (Aboy et al., 2005 [154]). The threshold is adapted by taking the P :th
percentile of the PPG samples contained in a 2-s sliding window so as to cover
at least one heart cycle. The delay time for the next peak search is adapted by
�ltering the extracted intervals with the third order median �lter and multiply-
ing the result with the experimentally determined multiplier M . The resulting
time series are further referred to as PP intervals.

4.3.3 Signal Quality Index

Artifacts and misdetected pulses are identi�ed via the signal quality index
(SQI). SQI is based on the cross-correlation between the extracted PPG pulse
and the signal quality-dependent template. Normally, a previous PPG pulse,
extracted from the analyzed signal, is used to evaluate the quality of the current
PPG pulse. However, if the quality of the previous PPG pulse is low, then
the hardcoded pulse template is used instead. The template is resampled to
match the number of samples to that of the current pulse. The cross-correlation
function is de�ned by

Rfg,k pτq �

» 8
�8

fkptqgkpt� τqdt, (4.15)

where fk,n is the current pulse, gk,n is a template, τ represents the lag, and k
stands for the number of k:th pulse. Both the current pulse and the template
are normalized by subtracting the mean and dividing by the standard deviation.
The lag at the maximal cross-correlation is determined by

τk � arg max
n

Rk,n, (4.16)
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where k is the k:th lag value. The maximal cross-correlation is obtained by

ck � Rk,τk , (4.17)

Template gk,n is updated by the previous pulse whenever cross-correlation ck
exceeds 0.95, and lag τk is within the range of �0.05 s. The template update is
performed by

gk,n �

#
fk,n, ck ¥ µ and τmin ¤ τk ¤ τmax

ghk,n, otherwise,
(4.18)

where µ is the cross-correlation threshold, τmin and τmax are thresholds of corre-
lation lags between the extracted pulse and the template, ghk,n is the hardcoded
template. Finally, the signal quality index is derived by

Qk �

#
1, ck ¥ µ

0, otherwise,
(4.19)

where Qk is approaching to 1 for a high quality pulse, while it is is much lower
for pulses a�ected by motion artifacts. Figure 4.13 illustrates the main steps of
the signal quality assessment.

4.3.4 Ectopic Beat Filtering

Premature heart contractions may result in irregular pulses or in complete
absence of the ectopic pulse, thus it is desirable to minimize the false-positive
rate due to ectopic activity-caused irregularity. We found that a 3-point median
�lter is useful for rejecting outlier PP intervals due to, for instance, irregular or
missed pulses. Higher-order median �lters are less bene�cial since they smooth
the pulse series to such a degree that AF episodes with low PP irregularity
remain undetected. The median �lter is de�ned by

pm,k � mediantpk�1, pk, pk�1u, (4.20)

where pk denotes the duration of the k:th PP interval in seconds.
Normally AF is associated with the increased heart rate, thus the mean

RR interval can be employed as a feature in the AF detector, cf. Lake et al.,
2011 [155]; Langley et al., 2012 [156]. Here, the exponential averager is used to
track the 'trend' in the RR interval series. The exponential averager is de�ned
by

pt,k � pt,k�1 � αpΓppm,kq � pt,k�1q, (4.21)

where α (0   α   1) determines the degree of smoothing, andKp�q is a saturated
linear transfer function produced by

Kppm,kq �

$'&
'%

0, pm,k   0

pm,k, 0   pm,k   1

1, pm,k ¥ 1.

(4.22)
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denote the boundaries of the extracted PPG pulses, (d) cross-correlation between the
extracted pulse and the template, (e) cross-correlation lags, and (f) the resulting SQI.

limiting of low pulse rates while using a saturated linear transfer function is
useful for detecting AF episodes of a very low pulse rate ( 60 bpm).

4.3.5 Sinus arrhythmia suppression

Regular but highly variable pulse rates, for example, during sinus arrhyth-
mia, may also cause false-positives (Cheung et al., 2015 [157]). Sinus arrhythmia
is identi�ed by �nding a number of turning points in detection window zk. For
regular pulses, zk takes values close to 0, yet it increases for irregular pulses.

4.3.6 PP interval irregularity

In a sliding detection window of length N , located at time k, the number of
all pairwise PP interval combinations di�ering more than γ seconds is determined
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and normalized with its maximum value NpN � 1q{2, i.e.,

It,k �

$'&
'%2

N�2°

i�0

N�1°

j�i�1
Hp|pk�i�pk�j |�γq

NpN�1q�pt,k
, zk ¡ 2,

0, otherwise

(4.23)

where Hp�q is the Heaviside step function. The division by pt,k is motivated by
the wish to emphasize PP irregularity at higher heart rates. It,k is close to 0
for regular rhythms since the di�erence between pairs of PP intervals is usually
smaller than γ, whereas It,k is approaching 1 during AF.

4.3.7 Bigeminy Suppression

Episodes of bigeminy might be incorrectly detected as AF when detection
relies only on PP intervals. Since a premature pulse usually merges with the
preceding pulse, bigeminy in PPG signals might take di�erent patterns from
those observed in ECG. Therefore, the bigeminy suppression block, originally
proposed in Petr
enas et al., 2015 [32], is modi�ed to account for PPG properties.
The bigeminy suppression measure is de�ned by

Bk �

�
����

N�1°
j�0

bk�j

N�1°
j�0

bm,k�j

� 1

�
���
2

, (4.24)

where N is an even-valued integer, bk and bm,k are median �ltered ratios of
successive PP intervals pk and median �ltered intervals pm,k, given by

bk � median
"
pk�1

pk
,
pk
pk�1

,
pk�1

pk�2

*
, (4.25)

bm,k � median
"
pm,k�1

pm,k
,
pm,k
pm,k�1

,
pm,k�1

pm,k�2

*
. (4.26)

The use of PP interval ratios is motivated by the observation that the
original implementation of bigeminy �ltering does not work properly due to the
constant PP interval length. Median �ltering is intended to smoothen the re-
sulting spikes during pulse transition from normal to bigeminy, and vice versa
(see Fig. 4.14). For bigeminy and regular pulse, the ratio in (4.24) is approx-
imately 1 since pm,k and pk are similar, and thus Bt,k is approximately 0, see
Fig. 4.14.
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Fig. 4.14. The steps to obtain bigeminy suppression measure by processing PP
intervals.

4.3.8 Signal Fusion and Detection

Simple signal fusion is employed to produce decision function Ok,

Ok �
"
It,k, Bt,k ¥ δ
Bt,k, Bt,k   δ.

(4.27)

Ok is identical to Bt,k, unless Bt,k exceeds �xed threshold δ. Otherwise,
Ok is equal to It,k.

Figure 4.15 illustrates the outputs of both PPG-optimized and original AF
detectors Ok and �Ok together with corresponding intervals pk for PPG signals
with an AF episode surrounded by ectopic beats, sinus rhythm with the episodes
of bigeminy and a segment with artifacts. It is obvious, that during an episode of
AF, outputs of both the PPG-optimized and original algorithms exceed threshold
values η and �η, respectively. However, unlike the original algorithm, the output
of the PPG-optimized algorithm does not exceed threshold value η during the
PPG segment with episodes of bigeminy and artifacts, therefore, resulting in no
false alarms. It is obvious that median �ltering removes the PP intervals related
to ectopic pulses so that an AF episode could be correctly detected and false
alarms could be avoided.
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Fig. 4.15. Intervals pk and outputs of PPG-optimized (Ok) and original (�Ok) AF
detection algorithms together with corresponding detection thresholds η and �η while

using PPG signals during: (a) atrial �brillation, (b) bigeminy, and (c) artifacts.

4.3.9 Implementation of Online Atrial Fibrillation Detector

The online version of the AF detector was implemented as the application
for the use in the Android operating system. As in the case with PVC detec-
tor, the PPG signal is transmitted to the smartphone via wireless Bluetooth
connection (see Fig. A3.2 in Appendix Appendix A3).

4.4 Conclusion of the Chapter

1. A phenomenological model for simulating PPG during sinus rhythm and
arrhythmias has been developed. The model accepts RR interval series as
input for generating simulated PPG signals. The model may be employed
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for the development and assessment of PPG-based arrhythmia detection
algorithms.

2. A PPG-based algorithm for the detection of PVCs has been developed.
The proposed detector relies on temporal, frequency domain features and
arti�cial neural network classi�er for the detection of PVCs. The rate of
false alarms is reduced by employing an artifact detector. The algorithm
can be implemented for online PVC detection.

3. A real-time PPG-based algorithm for the detection of AF relying on an
improved and modi�ed low-complexity AF detection algorithm and signal
quality assessment has been proposed. The algorithm employs solutions
allowing to reduce the in�uence of sources of false alarms, such as the
ectopic beats, bigeminy, sinus arrhythmia and artifacts. The algorithm
can be implemented for online AF detection.
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5 PERFORMANCE EVALUATION OF THE DEVELOPED

METHODS

5.1 Modeling of the PPG during Cardiac Arrhythmia

5.1.1 Data

The proposed model is evaluated on PPG signals from the Physionet MIMIC
Database, the University of Queensland Vital Sign Database (UQVSD), and the
MIT�BIH Atrial Fibrillation Database (AFDB).

ECG and PPG signals in the MIMIC database were originally sampled
at 500 Hz and 125 Hz, respectively, both with 12-bit precision. The sampling
rate of PPG was then digitally increased to match that of ECG. Records with
both ECG and PPG signals and varying morphology (56 records in total, see
Table A1.1 in Appendix) were selected and divided into 60-s segments. Only
segments of ECG and PPG free of excessive noise and artifacts were included
for further analysis. PPGs were preprocessed with a bandpass �nite impulse
response (FIR) �lter with 0.5 and 15 Hz as cut-o� frequencies and scaled to
develop the unit amplitude. Each segment was manually assigned to one of
the following three rhythm types: sinus rhythm, sinus rhythm with premature
beats, and AF, resulting in 510, 1198, and 377 segments, respectively. For single
PPG pulse modeling, 56 pulses of distinctive morphologies, free from noise and
artifacts were extracted from one of the 60-s segment and grouped according to
the pulse types shown in Fig. 4.2.

The University of Queensland Vital Signs Dataset contains data recorded
during 32 surgical cases from patients who underwent anaesthesia at the Royal
Adelaide Hospital (see Table A1.2 in Appendix). All the signals in the UQVSD
were recorded at 10 ms temporal resolution. Each case contains from 2 to 30
records of 10 minutes with a varying quality of both ECG and PPG signals.
Only 60-s segments free of excessive noise in both ECG and PPG were selected:
341 segments with sinus rhythm, 78 segments of sinus rhythm with premature
beats, and 33 segments with AF. For single PPG pulse modeling, 32 pulses
of distinctive morphologies, free from noise and artifacts, were extracted and
grouped according to the pulse types shown in Fig. 4.2. The ECG signals in
AFDB were sampled at 250 Hz with 12-bit precision. The annotated RR interval
series were used to generate model PPG signals.

5.1.2 AF Detection

The signi�cance of the proposed PPG model is studied in terms of AF
detection performance. A low-complexity AF detector based on RR interval
information is investigated; it has been designed to detect brief AF episodes
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(  30 s). The detector is described in detail in (Petr
enas et al., 2015 [32]). Im-
portant features of the detector are the short sliding detection window (8 beats)
and the low-power consumption due to few arithmetical operations, making the
detector particularly well-suited for use in a wearable system. By controlling the
cut-o� frequency of the exponential trend �lters, the detector can be tuned to
detect AF episodes as short as 8 beats.

The model PPG signal subject to AF detection is further preprocessed by
using an FIR bandpass �lter with cut-o� frequencies at 0.5 and 5 Hz aimed
at removing noise components not overlapping with the spectrum of the PPG
signal. Then, a real-time peak detector based on Aboy et al., 2005 [154] is applied
to the preprocessed signal so that the intervals between successive pulses can be
determined and used as input to the AF detector. In the peak detector, an
adaptive threshold is used in relation to the 55:th percentile of the samples in a
2-s sliding window.

5.1.3 Performance Evaluation

A number of parameter values need to be set in the simulation model. For
a single PPG pulse, the initial values of the involved parameters are, prior to
�tting, manually de�ned within reasonable ranges so that the direct wave of the
pulse precedes the two re�ection waves.

Therefore, interval ratio thresholds η0 and η1 in (4.7)�(4.9) are set to 0.8
and 1.4, respectively. Suitable threshold values are investigated in the Results
section (see Fig. 5.3).

Sampling interval T in (4.11) is set to d{Fs, where d is the duration of a
time interval used to obtain parameters for model PPG pulses, and Fs represents
the sampling rate, e.g., 500 Hz for MIMIC signals.

The adequacy of the proposed PPG model is evaluated by comparison to
PPGs from the MIMIC and UQVSD databases. The root mean square error (E)
between the real and model signals is the primary measure intended to evaluate
the performance de�ned by

E �
1

M

M̧

m�1

gffe 1

N

Ņ

n�1

pumpnq � xmpnqq
2, (5.1)

where M is the total number of segments, m is the segment number, N is the
total number of samples in a segment, n is the sample number, and umpnq is the
real signal. Prior to computing E, both real and modeled signals are normalized
to the unit amplitude. In order to avoid issues related to signal misalignment,
crosscorrelation was used to align the two involved signals.

In order to test the AF detector, all the 25 annotated RR interval se-
ries from the AFDB database were used. Since the morphology of PPG pulses
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depends on many factors including the age and the medical condition, the eval-
uation is performed with PPGs modeled by utilizing the �ve PPG pulse types in
Fig. 4.2; thus a total of 125 model PPGs are analyzed. The performance of the
peak detector and the AF detector are evaluated separately in terms of precision
(P ), sensitivity (Se) and speci�city (Sp), respectively, at various SNRs ranging
from 0 to 30 dB. Precision is de�ned as

P �
TP

TP � FP
� 100%, (5.2)

where TP is the number of correctly detected peaks and FP is the number of
falsely detected peaks. Accuracy is obtained by

Se �
TP

TP � FP
� 100%, (5.3)

where TP is the number of beats correctly identi�ed as AF, whereas FP is the
number of beats that are falsely detected as AF.

Sp �
TN

FN � TN
� 100%, (5.4)

where TN is the number of beats correctly identi�ed as non-AF, and FN is the
number of beats, falsely detected as non-AF.

In order to extract the artifact from the real PPG segment, the NLMS
adaptation step size µ � 1 � 10�3 and �lter order 20 was used. The impulse
response of an extracted artifact was determined by setting the values for the
adaptation step size and the �lter order to 1 � 10�7 and 200, respectively. This
allows for slower adaptation and a larger number of coe�cients for capturing the
impulse response of the artifact.

5.1.4 Results

Modeling of single PPG pulses. The proposed PPG pulse model was compared
with the relative models based on gamma and two Gaussian waveforms (Huang
et al., 2013 [136]), three log-normal waveforms (Huotari et al., 2011 [137]), and
three Gaussian waveforms (Wang et al., 2013 [134]; Liu et al., 2014 [135]) (see
Fig. 5.1). The initial set of pulse �tting parameters is provided in Table A2.1
(see Appendix Appendix A2).

The top chart in Fig. 5.2 shows the average RMS errors stemming from us-
ing di�erent PPG pulse models, together with 56 PPG pulses from the MIMIC
database (see table A1.1 in Appendix Appendix A1 for details), grouped into
3 PPG pulse types; types 2 and 3 bis pulses were not present in the database. The
smallest error was obtained for the log-normal waveform combined with two Gaus-
sians. The middle chart in Fig. 5.2 shows the average RMS errors that result
from using di�erent PPG pulse models, together with 32 PPG pulses from the
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Fig. 5.1. Examples of model PPG pulses. The top row shows the PPG pulses
obtained by combining log-normal and Gaussian waveforms, the second row shows the
PPG pulse obtained on the basis of gamma and Gaussian waveforms, the third row

shows the log-normal waveform-based approach and the fourth row shows PPG pulses
modeled by using Gaussian waveforms. The bottom row shows residuals between

templates and model PPG pulses.

UQVSD database (see table A1.2 in Appendix Appendix A1 for details) also
grouped into 3 PPG pulse types; types 2 and 3 bis pulses were not present in the
database. The largest error was obtained for the model with three Gaussians,
while the smallest error for Type 3 and Type 4 pulses was obtained for the log-
normal waveform combined with two Gaussians. The bottom chart in Fig. 5.2
shows the RMS errors obtained from the �ve di�erent PPG pulse types shown
in Fig. 4.2. A similar error was obtained for the log-normal waveform combined
with two Gaussians and for the gamma waveform combined with two Gaussians,
while the largest error was obtained for the model with three Gaussians.

Modeling of connected PPG signals. Figure 5.3 shows the RMS error between
modeled and real PPG signals as a function of η0 and η1 thresholds, used in (4.7)�
(4.9). The results suggest that suitable values for η0 and η1 are 0.8 and 1.4,
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Fig. 5.2. From top to bottom. The RMS error for 56 normalized PPG pulses
(3 - Type 1, 40 - Type 3, and 13 - Type 4) from the MIMIC database, the RMS error
for 32 normalized PPG pulses (3 - Type 1, 20 - Type 3, and 9 - Type 4) from the
UQVSD database, and the RMS error for 5 normalized single PPG pulse types (see
Fig. 4.2) while using di�erent modeling approaches: (a) log-normal and Gaussian, (b)

gamma and Gaussian, (c) log-normal, (d) Gaussian.

respectively. The increase in the RMS error for η0 ¡ 0.8 is due the rules in (4.7)
and (4.8), applying to beats associated with small interval variation but which are
not premature. Threshold η1 ensures that the ratio of a compensatory pause rk�1

and premature rk is associated only with a premature beat when determining
the pulse amplitude in (4.9) since, in cases when rk�1 is compensatory pause
and rk is a normal interval, the ratio may also be below 0.8 and, accordingly,
falsely associated with a premature pulse. Therefore, a larger threshold than
η1 � 1.4 leads to an increase in the RMS error, due to which, premature beats
are associated with normal beats. As expected, η0 and η1 have no e�ect during
the sinus rhythm since the di�erence between successive intervals is insigni�cant.

Figure 5.4 shows that the lowest RMS error is obtained for PPGs with
sinus rhythm and sinus rhythm with premature beats, whereas E increases to
0.1 for AF.
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Fig. 5.3. RMS error between 1-min connected model signals and real PPG signals as
a function of the thresholds (a) η0, (b) η1 in (4.7)�(4.9). Dashed horizontal lines show
ratio thresholds for various rhythm types: atrial �brillation (AF), sinus rhythm with

premature beats (PB), and sinus rhythm (SR).
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Fig. 5.4. The RMS error for 1-min continuous PPG signals with (a) atrial
�brillation, (b) sinus rhythm with premature beats, and (c) sinus rhythm. PPG

signals are simulated by using the log-normal and Gaussian pulse modeling approach.

Figure 5.5 presents the precision (P ) of the peak detector and both sensi-
tivity (Se) and speci�city (Sp) of the AF detector as a function of SNR for the
�ve pulse types. It is obvious that the detection performance of both peak and
AF detectors drops rather quickly below a certain SNR which is strongly depen-
dent on the pulse type. Signals composed of Type 1 pulses cause the detection
accuracy to drop at a higher SNR than the other four types of pulses do. The
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increase in Se at low SNRs is due to the detection of extra random noise-induced
peaks, resulting in irregular intervals causing the AF detector to produce false
alarms.
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Fig. 5.5. (a) Precision of peak detection, (b) sensitivity of AF detection and (c)
speci�city of AF detection. The PPG signal, corresponding to the SNR at a precision

of P �95 %, is displayed above the corresponding curve. The sensitivity and
speci�city resulting from RR-based detection in AFDB (97.1 % and 98.3 %,

respectively) are displayed as horizontal lines.

5.1.5 Discussion

The aim of this work is to develop a phenomenological model for simulating
PPG signals with paroxysmal AF. With the emerging technologies, capable of
acquiring PPG (wristbands with integrated PPG sensors, smartphone camera),
there is still lack of algorithms which could provide diagnostic information, i.e.,
detect arrhythmic episodes. Lack of annotated PPG databases with arrhythmic
episodes is a major limitation hindering the development of such algorithms.

An important advantage of the proposed model for PPG signals is that
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annotated ECG databases with AF episodes, e.g., MIT�BIH Arrhythmia, MIT�
BIH Atrial Fibrillation, Long Term AF database, or generators of RR interval
series, e.g., McSharry et al., 2003 [158]; Lian et al., 2007 [159], can be used
for generating annotated PPG signals�a principle which makes it possible to
compare the performance of a PPG-based detector to that of an ECG-based
detector. Since the ECG and PPG signals have di�erent origins, i.e., electrical
and hemodynamic, their properties are quite di�erent as well. For example, the
PPG pulse related to a premature beat may not be observable, which leads to
the consequence that the peak-to-peak interval is approximately twice as long
as is the corresponding RR interval (see Fig.4.5). Therefore, it is desirable that
PPG-based AF detectors are developed and evaluated on PPG signals, rather
than on ECG signals (Lee et al., 2013 [28]) so that PPG-speci�c changes in
morphology are taken into account.

Various approaches to simulating hemodynamic signals have been pro-
posed, however, none of them have been directly intended for simulation of
arrhythmia (Cli�ord et al., 2004 [138]; Nabar et al., 2011 [139]; Martin-Martinez
et al., 2013 [140]; Scarsoglio et al., 2014 [141]). Therefore, an important objective
of the present study was to develop a simulator accounting for PPG morphology
during AF and premature beats, as well as during transitions from the sinus
rhythm to AF, or vice versa.

This study proposes a combination of a log-normal function and two Gaus-
sian functions for the modeling of di�erent types of PPG pulses. However, other
approaches may also be considered since negligible di�erences are observed in
PPG sequences generated by di�erent models therefore making no signi�cant
impact on the morphology of the simulated signals, and no in�uence on the AF
detection performance, either. While the Hermite functions originally proposed
for modeling QRS complexes (Sörnmo et al., 1981 [160]), are well-suited for sim-
ulating subtle changes in the PPG, i.e., dicrotic notch, they are less-suited for
modeling the re�ected blood volume waves due to negative polarity; therefore,
these functions were not further pursued.

The modeling of the PPG pulse amplitude has received little, if any, at-
tention in the scholarly literature. Since the amplitude depends on numerous
factors, such as age, arterial compliance, and permeability (Allen et al., 2003
[161]), we have, for the sake of simplicity, assumed that the pulse amplitude is
inversely proportional to the length of the RR interval. Given that a simulator
has been developed for modeling the PPG during AF, the model does not ac-
count for amplitude modulation induced by respiration, nor for the modulation
of the pulse width. Therefore, the simulation model is not suitable for evaluat-
ing the performance of the methods which derive the respiratory rate from PPG,
e.g., the one developed in (Lázaro et al., 2013 [162]).

The performance of the AF detector is heavily dependent on the accuracy
of the PPG pulse detector since the series with peak-to-peak intervals serves as
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the input to the AF detector: the number of false positives increases considerably
at lower SNRs due to the incorrect peak detection. The results in Fig. 5.5 show
that PPG signals composed of Type 1 pulses are particularly vulnerable to noise
as the risk to falsely detect the dicrotic pulse as a systolic peak increases.

The PPG is much more prone to noise and artifacts than the ECG, there-
fore, the synchronously recorded ECG is indispensable for high-precision an-
notation of the PPG. Therefore, the MIMIC (Moody et al., 1996 [130]) and
MIMIC II (Saeed et al., 2011 [132]) databases are usually applied for the de-
velopment and testing of PPG-based algorithms. Yet, the MIMIC and MIMIC
II databases are unannotated, and would require substantial time to manually
annotate.

The idea to use an annotated ECG database as the basis for simulation
of PPG signals may also be considered when other physiological signals are of
interest to model, e.g., impedance plethysmography or continuous arterial blood
pressure. The proposed simulator may also be explored for reconstructing noise-
corrupted PPG signals when a synchronously recorded ECG is available or for
other noise cleaning approaches, such as Banerjee et al., 2015 [163].

A limitation of the present study is that simulator performance was not
investigated on other types of arrhythmias such as atrial �utter or supraventric-
ular tachycardia since these types are lacking in the MIMIC database. Although
such arrhythmias may be present in the comprehensive MIMIC II database, sig-
nals are generally of lower quality due to the lower sampling rate, artifacts, and
missing signals. Another limitation of the present study is that the model is not
tested on a PPG-speci�c AF detector. The development of PPG-speci�c AF
detectors is highly needed; hopefully, it will be prompted by the present model
PPG signals.

5.2 PPG-based Detection of Premature Ventricular Contractions

5.2.1 Data

Clinical signals. The algorithm was developed on 18 PPGs (a training set) sam-
pled at 125 Hz, which were taken from the PhysioNet MIMIC II database (Gold-
berger et al., 2000 [131]; Saeed et al., 2011 [132]). Twenty-�ve 1�2 h PPGs
sampled at 250 Hz (the MIMIC database (Moody et al., 1996 [130])), and one
100-min-long signal sampled at 250 Hz (recorded at Kaunas Biomedical Engi-
neering Institute, referred to as BMEI) were used for testing. In order to reduce
the errors that may occur during the feature extraction, all the signals were
resampled to 500 Hz.

PVCs in the PPG were annotated with respect to a synchronously recorded
reference ECG. At �rst, PVCs in the ECG were detected by using an automated
RR interval detection algorithm (Benitez et al., 2001 [164]). Then, RR intervals
were used for manual evaluation of ECG morphology so that to ensure that the
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particular beat is PVC. Finally, PVC-related PPG pulses were labeled as P 1 or
P 2 according to the previously described procedure. The remaining PPG pulses
were assigned to normal N .

Since the signals in both databases (MIMIC and MIMIC II) contain severe
signal corruptions or various pathologies, several of them were excluded from
the study. The criteria for discarding the signals was the absence of usable
information in either ECG or PPG, therefore resulting in di�culties to correctly
annotate the signals. The list of the test signals is presented in Table 5.1.

Table 5.1. Test PPGs obtained from the MIMIC database (No. 1�25) and recorded
at KTU BME institute (No. 26)

No. Record #P 1 #P 2 No. Record #P 1 #P 2

1 039 0 0 14 404 0 268

2 041 0 0 15 408 9 2

3 055 1 0 16 439 12 3

4 211 0 0 17 442 1288 366

5 212 159 30 18 444 7 10

6 218 0 0 19 449 7 2

7 221 11 0 20 466 3 4

8 224 0 0 21 471 1 0

9 225 0 11 22 474 2 4

10 230 0 4 23 482 48 88

11 237 40 14 24 484 69 20

12 252 0 0 25 485 754 16

13 253 0 0 26 BMEI 25 2

Total: 211 59 Total: 2225 785

Simulated signals. The simulated PPG signals were produced by applying the
PPG model proposed in Solo²enko et al., 2017 [144]. Since the PPG model
accepts RR interval series as its input, the RR interval series generator is used
to supply them (McSharry et al., 2003 [158]). The generator of RR interval series
is capable of simulating both the RR series during the normal sinus rhythm and
during cardiac ectopy at various heart rates. The settings used for generating
the RR interval series are presented in Table 5.2.

5.2.2 Performance Evaluation

The performance of the method was evaluated in terms of the sensitiv-
ity (Se), speci�city (Sp) and accuracy (Ac). Due to the a considerable di�erence
regarding a number of normal pulses and PVCs, the Matthews correlation co-
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Table 5.2. Parameter settings used in RR interval generator

No. Parameter Value

1 Mean heart rate [60, 240] bpm

2 Standard deviation [0.5, 3] bpm

3 Mayer wave frequency, F1 0.1 Hz

4 Respiratory rate, F2 [0.2, 0.5] Hz

5 Standard deviation of F1, σV,1 0.01 Hz

6 Standard deviation of F2, σV,2 0.01 Hz

7 Low-frequency/high-frequency ratio, P1/P2 [0.5, 2]

8 Rate of atrial ectopic beats 0.05

e�cient was employed as an additional performance measure (Mc) (Gorodkin,
2004 [165]).

The method was tested by using ANN with either linear and non-linear
outputs. The full feature set (3 PP and 3 PR) was applied for training the
ANN. In addition, the performance was also tested with a reduced feature set,
consisting of just 3 PP inputs. Since, the weights in the ANN are initialized
randomly, the training process was repeated 3 times, and then the averaged
performance values were taken as the overall performance measure.

It should be noted that the initial testing was carried out without involving
artifact detection. Then, both the best performing, and the most computation-
ally e�cient (with PP features, linear outputs, and blocks 6, 7 and 8 excluded
in Fig. 4.7) con�gurations were used for repeated testing but with the artifact
detector involved.

5.2.3 Results

Clinical signals. The results of clinical signals are presented in Tables 5.3�5.6.
Table 5.3 shows that the performance of ANN does not depend on the type
of neurons in the output layer, although slightly better results were obtained
when an ANN with the linear outputs is used. On the other hand, the ANN
employing only a PP feature set is associated with a higher accuracy when non-
linear outputs are used (Table 5.4).

The ANN with non-linear outputs and the full feature set was further
reinvestigated � but with the artifact detector included. The inclusion of the ar-
tifact detector allowed reducing the number of false positives by approximately
60 %. Thus, Sp for PVC types P 1 and P 2 increased from 99.6 %/99.8 % to
99.9 %/99.9 %, respectively. However, the inclusion of the artifact detector
resulted in a slight decrease in Se from 94.2 %/93.1 % to 93.2/92.4 %, respec-
tively (Table 5.5). The decrease in sensitivity can be explained by the fact that
some of the premature pulses have a similar morphology to that of artifacts, and
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Table 5.3. The classi�cation results obtained while using both PP and PR features as
input to ANN: (a) performance measures, (b) confusion matrices.

Linear output ANN Non-linear output ANN

Class ñ N P 1 P 2 N P 1 P 2

(a)

Se,% 99.4 94.2 93.1 99.3 93.2 91.6

Sp,% 94.2 99.6 99.8 93.1 99.5 99.8

Ac,% 99.3 99.5 99.8 99.3 99.5 99.8

Mc,% 78.3 79.3 75.2 78.0 77.5 75.2

Class ñ N P 1 P 2 N P 1 P 2

(b)

N 255002 133 57 254867 156 70

P 1 1122 2295 1 1236 2271 1

P 2 496 8 786 468 9 773

Table 5.4. The classi�cation results obtained while using solely PP-based features:
(a) performance measures, (b) confusion matrices.

Linear output ANN Non-linear output ANN

Class ñ N P 1 P 2 N P 1 P 2

(a)

Se,% 99.3 90.5 84.0 99.0 91.2 91.0

Sp,% 89.1 99.6 99.8 92.6 99.4 99.7

Ac,% 99.2 99.5 99.7 99.0 99.3 99.7

Mc,% 74.4 77.1 66.8 71.7 73.5 66.5

Class ñ N P 1 P 2 N P 1 P 2

(b)

N 255069 222 134 253302 186 53

P 1 1134 2205 1 1499 2237 0

P 2 610 9 709 768 13 746

therefore were removed from further analysis.
The most computationally e�cient con�guration is associated with a slightly

worse performance compared to the best performing con�guration (see Tables 5.5
and 5.6). By combining this con�guration with the artifact detector, the num-
ber of false positives decreased by approximately 63 % compared to the level
achieved without employing the artifact detector. Moreover, Sp for the P 1 PVC
type increased from 99.6 % to 99.9 %. In contrast, Sp for P 2 PVC type remained
unchanged. According to the previous explanation, a slight decrease in Se is ob-
served for both PVC pulse types, i.e., from 90.5 %/84.0 % to 89.5 %/83.2 % for
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Table 5.5. Classi�cation results obtained while using non-linear output ANN classi�er,
both PP and PR features and artifact detector: (a) performance measures, (b) confusion
matrices.

Class ñ N P 1 P 2

(a)

Se,% 99.8 93.2 92.4

Sp,% 93.3 99.9 99.9

Ac,% 99.7 99.8 99.8

Mc,% 87.7 91.3 78.7

Class ñ N P 1 P 2

(b)

N 255891 158 63

P 1 262 2270 1

P 2 373 8 780

Table 5.6. Classi�cation results obtained while using linear output ANN, PP features
and artifact detector: (a) performance measures, (b) confusion matrices.

Class ñ N P 1 P 2

(a)

Se,% 99.7 89.5 83.2

Sp,% 88.2 99.9 99.8

Ac,% 99.5 99.8 99.7

Mc,% 81.9 87.5 68.3

Class ñ N P 1 P 2

(b)

N 254696 246 137

P 1 362 2181 1

P 2 523 9 683

P 1 and P 2, respectively.

Online version with simulated signals. Figure 5.6 presents PVC detection results
obtained on simulated PPG signal database at various SNRs ranging from 0 dB
to 30 dB.

Here, the algorithm con�guration relying on PP intervals and ANN with
non-linear output was used as a compromise between the detection sensitivity,
speci�city and algorithm complexity. The results show that in most cases, PVCs
can be reliably detected up to 20 dB SNR at 60 bpm with the sensitivity and
speci�city as high as 94.4�3.1 % and 99.98�0.01 %, respectively. At higher
heart rates, ranging from 120 bpm to 240 bpm, PVCs can be reliably detected
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Fig. 5.6. PVC detection sensitivity (Se) and speci�city (Sp) as a function of SNR
on simulated PPG signals with �ve PPG pulse types and at di�erent heart rates: (a)

60 bpm, (b) 120 bpm, (c) 180 bpm, and (d) 240 bpm.

at SNR as low as 10 dB. In this case, the mean sensitivity and speci�city values
for all the pulse types are 96.6�0.9 % and 99.06�0.6 %, respectively. At 0 dB
SNR, the mean speci�city of 91.9�1.6 % is obtained. The performance drop at
the normal heart rate is explained by the fact that the spectrum of the applied
noise is in the lower frequency ranges and distorts the fundamental components
of the PPG signal more than in the range of 180�240 bpm.
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5.2.4 Discussion

The goal of this work was to develop a method for the detection of prema-
ture ventricular contractions by relying solely on photoplethysmography signal
analysis. Our �rst attempt to detect premature contractions by using PPG was
presented in an earlier study (Solo²enko et al., 2013 [166]). Besides that, a pilot
study was performed on the basis of only 9 PPG signals; the previous algorithm,
in contrast to the proposed one, had limited capabilities of detecting successive
premature pulses, such as bigeminy.

In contrast to ECG, the PPG can be acquired in a single spot of the body,
let alone the fact that no adhesive electrodes are required. Considering these
points, PPG-based arrhythmia detection is an attractive solution for both short-
term screening and long-term arrhythmia monitoring when unobtrusiveness for
the user is of special importance.

The proposed PVC detector, due to the blocks of adaptive feature extrac-
tion and artifact detection, allowed to achieve superior performance in compari-
son to that obtained by Gil et al., 2013 [124]. Even though, Gil et al., 2013 [124]

excluded those PVCs which had occurred within 5 previous or 20 subsequent
beats, our method was more accurate (99.8 % vs. 99.3 %).

The study revealed that the main challenge is to distinguish between PVCs
and artifacts, since the distorted PPG pulse can be erroneously assigned to the
class of premature beats. Thus high amplitude artifacts may distort a group
of nearby pulses and introduce residual distortions in a shape of further pulses.
Nevertheless, even the simpli�ed con�guration of the algorithm showed su�-
cient performance to detect PVCs in artifact-distorted PPGs (see Table 5.4 (a)).
Therefore, the simpli�ed (computationally e�cient) con�guration can be con-
sidered for the implementation in a mobile device.

Although the algorithm shows nearly perfect speci�city (99.9 %), the speci-
�city can be further improved by computing PRs in several discrete ranges of
each PP rather than by obtaining PRs across the entire PP interval. Additional
improvement in the speci�city may be achieved by upgrading the artifact de-
tector since the current artifact detector is e�ective only in those cases when
artifacts are denoted by a higher amplitude than the normal PPG pulse.

In this study, high-pass and low-pass FIR �lters were used to pre-process
the PPG. However, more advanced signal processing techniques can be employed
either to eliminate PPG distortions, such as baseline wandering (Laguna et al.,
1992 [153]; Wang et al., 2014 [167]), or to assess the PPG quality (Patterson
et al., 2011 [168]; Li et al., 2012 [169]). Initial tests showed that a single-layer
perceptron classi�er does not converge during training, owing to the fact that
the PPG features used in the present study are not linearly separable. Hence, a
multi-layer perceptron (i.e., ANN) was chosen due to its universal characteristics
and ability to approximate linear and non-linear functions. In addition, the
performance of PPG pulse classi�cation largely depends on the estimated normal
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heart rate (parameter fNHR) which in�uences the normalization process.
The presented study has several limitations. Firstly, the signals were not

annotated by medical experts. Secondly, the method has not been tested on the
signals recorded during active motion, such as walking or jogging. Finally, for
some rare PVC types (e.g., interpolated PVCs) (Reilly et al., 1992 [170]), PVCs
can not be detected by the algorithm because PPG is not sensitive enough to
hemodynamic changes during such cardiac events.

5.3 PPG-based Detection of Atrial Fibrillation

5.3.1 Dataset and Performance Evaluation

Simulated signals. The algorithm was developed on the Long Term Atrial Fib-
rillation Database (LTAFDB) (Petrutiu et al., 2007 [171]; Goldberger et al., 2000
[131]). LTAFDB is composed of 84 ECG recordings from patients with paroxys-
mal or persistent AF, most recordings extending over 24-h duration. The entire
database consists of nearly 9 million beats, of which, 59 % occur during AF.

The MIT�BIH Atrial Fibrillation Database (AFDB) (Moody et al., 1983
[172]; Goldberger et al., 2000 [131]), the MIT�BIH Arrhythmia Database (MITDB)
(Goldberger et al., 2000 [131]) and the MIT�BIH Normal Sinus Rhythm Database
(NSRDB) (Goldberger et al., 2000 [131]) were used for performance evaluation.
The AFDB database includes 25 AF recordings of approximately 10-h duration;
in total, it contains more than 1 million beats, of which, 43 % occur during AF.
The MITDB consists of 48 half-hour ECG recordings with a total of approx-
imately 109,000 beats. The NSRDB contains 18 ECG recordings of approxi-
mately 24-h duration, with a total of almost 2 million beats. Since no signi�cant
arrhythmias are present, it is well-suited for the evaluation of the detector speci-
�city.

Simulated PPG signals for the PPG-based AF detector evaluation were
generated by applying the RR interval series with annotations from the LTAFDB
and AFDB to the input of the PPG signal simulator proposed in (Solo²enko et
al., 2017 [144]).

Clinical signals. The clinical dataset was collected from signals recorded at Ku-
lautuva Rehabilitation Hospital of Kaunas Clinics, Lithuania. Two groups of
participants were involved at Kulautuva Rehabilitation Hospital of Kaunas Clin-
ics, Lithuania. The �rst group consisted of 15 patients with AF, 72.9�8.9 years
old, with the body-mass index of 28.3�5.9 kg/m2, and the total monitoring time
of 316.2 hours (21�3.8 hours per patient). The second group consisted of 19 pa-
tients without AF, 67.5�10 years old, with the body-mass index of 28�5 kg/m2,
and the total monitoring time of 411.1 hours (21.6�3.1 hours per patient). The
signal recording was approved by Kaunas Region Biomedical Research Ethics
Committee (No. BE-2-20).
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Performance measures. The performance was investigated in terms of sensitivity
(Se), speci�city (Sp), accuracy (Ac) and Matthews correlation coe�cient (Mc).
Sensitivity is de�ned by the number of correctly detected AF beats divided by
the total number of AF beats, whereas speci�city is de�ned by the number of
correctly detected non-AF beats divided by the total number of non-AF beats.
Accuracy is de�ned as the ratio of correctly detected both AF and non-AF beats
with the total number of beats. All the other types of rhythm, including atrial
�utter, were labeled as non-AF.

5.3.2 Results

Parameter settings Figure 5.7 displays the ROC curves of the original and PPG-
optimized algorithms with LTAFDB. Detection threshold η was changed from
the original value of 0.725 to 0.630. As in the previous study, the threshold value
was chosen at the point of the ROC curve where both sensitivity and speci�city
on the LTAFDB were equal, i.e., 95 %.
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Fig. 5.7. ROC curves of both the original and PPG-optimized AF detectors.

Figure 5.8 shows AF detection performance as a function of peak detection
threshold percentile. The highest AF detection accuracy is in the range between
55:th and 65:th percentiles.

Figure 5.9 shows the peak detection performance as a function of the peak
detection interval multiplier. The highest AF detection accuracy is obtained at
M � 0.45.

Figure 5.10 shows the PPG-based AF detection algorithm performance
on the SQI threshold. The threshold was determined by using a simulated PPG
signal generated by using RR intervals from LTAFDB. AF detection Ac does not
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Fig. 5.9. AF detection accuracy on peak detection interval multiplier M with
di�erent PPG pulse types.

change up to correlation threshold value µ = 0.7, when positive and negative
correlation lags τmin and τmax are set to �0.35 ms, respectively.

The remaining parameters were kept the same as in the original AF detec-
tor: γ � 0.03 s, N � 8, δ � 2 � 10�4, and α � 0.02.

Results with ECG RR intervals. Table 5.7 presents the performance of the PPG-
optimized AF detection part on the ECG RR interval series from various pub-
lic databases. The results show that modi�cations and improvements do not
degrade the performance of the detector on the RR interval series from AFDB
(Se � 97.1 % and Sp � 98.4 %); however, substantial improvement in speci�city
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Fig. 5.10. AF detection accuracy (Ac) as a function of the SQI threshold and the
type of the PPG pulse.

is noticed in MIDTB and NSRDB databases, at 91.3 % and 99.2 %, respectively.

Table 5.7. Sensitivity (Se), speci�city (Sp), accuracy (Ac), and Mathews correlation
coe�cient (Mc) of the PPG-optimized and original AF detectors, evaluated on RR
interval series from the MIT�BIH Atrial Fibrillation (AFDB), MIT�BIH Arrhythmia
(MITDB), and MIT�BIH Normal Sinus Rhythm (NSRDB) databases.

Database AFDB MITDB NSRDB

Performance, % Se Sp Ac Mc Se Sp Ac Mc Se Sp Ac Mc

PPG-optimized 97.1 98.4 97.8 95.5 96.8 91.3 92.6 71.9 NA 99.2 NA NA

Original 97.1 98.3 97.8 95.5 97.8 86.4 87.6 61.8 NA 98.6 NA NA

Detection on the simulated database. Figure 5.11 shows the results of the pro-
posed as well as the original algorithms at various SNR levels ranging from 0 dB
to 30 dB for �ve PPG pulse types are shown. The proposed algorithm retains
a high speci�city of nearly 100 % even at SNR values in the range from 0 dB
to 10 dB, whereas the speci�city of the original algorithm declines starting from
the SNR value of 10dB.

Detection on the clinical database. Figure 5.12 shows the performance of the
algorithm while using real PPG signals at di�erent values of correlation threshold
µ ranging from 0.4 % to 0.8 %. As in case with simulated PPG signals, the AF
detection is based on triggering AF detection part of the algorithm only when no
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Fig. 5.11. Sensitivity (Se) and speci�city (Sp) of (a) proposed and (b) original RR
interval-based AF detection algorithms at various SNR values and for di�erent PPG

pulse types.

artifacts are detected, e.g., SQI � 0 and vice versa. Compared to the method
based on the acceleration data, resulting in up to 65.4�5.7 % of motion-free data,
Se � 99.9 %, and Sp � 91.5 %, the proposed method at threshold µ � 0.7 results
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in Se � 69.42 %, and Sp � 99.76 %. The percentage of the informative signal and
Sp can be considerably increased by lowering SQI threshold µ however, at the
expense of reduced Se, which is undesirable in long-term monitoring applications
due to a large number of false-positives (Fig. 5.12 c).
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Fig. 5.12. Detection performance on a clinical PPG database for di�erent SQI
thresholds: (a) sensitivity on PPG signals with persistent AF, (b) speci�city on PPG

signals with no AF, and (c) the average number of false-positives per day.

5.3.3 Discussion

The proposed algorithm for AF screening is developed while having high
speci�city at low SNRs in mind.

Various studies stated that cardiac event recorders are prone to false alarms
due to ectopic beats since they share similar symptoms to those of AF. For
example, a study of 48 participants (50 % with AF) showed that while using an
external loop recorder 3100 BT by Vitaphone (3100 BT, Vitaphone, Mannheim,
Germany) each patient in sinus rhythm on average had more than 5 false-positive
ECG recordings (Müller et al., 2009 [173]). Comparable performance of this
device was reported in another study where 2,923 ECG events were collected
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in 108 patients Velthuis et al., 2013 [174]. Roughly 1200 detected events were
classi�ed as AF by the automatic algorithm, however, only 56 were con�rmed
to be AF after manual revision.

For screening in the community or for personal use, a drop in sensitivity
may be a necessary trade-o� to achieve very high speci�city. This is particularly
important if large numbers of people are screened or when multiple recordings
are requested for each person, as might be the case with a PPG-based appli-
cation. In this situation even small reductions in speci�city could lead to very
large numbers of false-positive results, which would require veri�cation with a
separate ECG (Freedman, 2016 [31]). A study by Desteghe et al., 2016 [175]

showed that even a commercial ECG-based AliveCor system composed of the
ECG recording device and a mobile application has a relatively low sensitivity
(55 %) at an expense of high speci�city. It was made intentionally in order to
decrease the number of false alarms, especially when a large population is mon-
itored. Moreover, as opposed to ECG, no diagnosis could be made out of PPG
signals, therefore high speci�city in PPG-based AF detectors is of utmost im-
portance since even a small decrease in speci�city may produce a large number
of false alarms (Freedman, 2016 [31]).

The currently used ECG-based screening devices are developed to exhibit
high sensitivity. This is due to short recording time and the ability to con�rm the
diagnosis in ECG recordings by a physician. On the other hand, a PPG-based
continuous screening device would have a di�erent purpose, because currently
there are no clinical guidelines on how to interpret arrhythmias in PPG. Thus the
device should have high speci�city so that to reduce the number of false alarms
as much as possible. If AF is detected by a PPG-based device then standard
techniques should be prescribed, i.e., Holter monitoring. Such an approach would
allow implementing low-price mass-screening of the target population.

When developing PPG-based AF detection algorithms, the peculiarities of
PPG signals have to be taken into account. Other authors applied ECG-based
AF detection methods on PPG signals without any speci�c modi�cations and
adaptations, and although they do work, there are di�erences between ECG and
PPG-derived features, particularly during arrhythmic events.

Even though an accelerometer can provide information on motion, there
are certain activities which may not involve motion as such, e.g., curling �ngers
into the palm, which is su�cient to compromise the quality of the PPG signal
due to the movement of the internal tissues.

The modi�cations of the ECG RR interval-based AF detection algorithm
not only accounts for the di�erences between PPG and ECG derived features
but also for the improved AF detection accuracy on ECG signals.

In order to improve sensitivity in long-term PPG-based AF monitoring
without compromising the speci�city, the quality of the recorded signal has to
be improved.
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5.4 Conclusions of the Chapter

1. A phenomenological model for simulating PPG signals during AF, as well
as other regular and irregular rhythms, is introduced. In quantitative
terms, the simulated signals bear close resemblance to a wide range of
signals taken from databases. The possibility to simulate connected PPG
signals, composed of di�erent types of PPG pulses at di�erent SNRs is
valuable when developing and testing PPG-based AF detectors.

2. A photoplethysmography-based method for the detection of premature
ventricular contractions has been developed. Considering its high perfor-
mance, the proposed PVC detector is expected to have both non-clinical
(e.g., sleep monitoring) and clinical (e.g., in hemodialysis procedures) rel-
evance when moderate physical activity is involved.

3. The present study shows that the proposed PPG signal-based AF detection
algorithm o�ers not only good accuracy at moderate SNR levels but also
excellent speci�city at low SNR levels.
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6 CONCLUSIONS

1. The increase in arrhythmia prevalence is due to the ageing population,
usually associated with cardiovascular diseases, lifestyle and the constantly
improving ability to suspect and diagnose arrhythmia. Currently, there are
various strategies and equipment available for arrhythmia detection, how-
ever, most of them are electrocardiogram-based, requiring no fewer than
two electrodes attached to the body or hand-held either for long-term or
for intermediate monitoring, respectively. New, more convenient and cost-
e�ective approaches employing alternative signals e.g., photoplethysmo-
gram, are being developed and investigated. However, in order to reduce
the in�uence of motion-induced artifacts on arrhythmia detection speci-
�city, such approaches are only used for short recordings, e.g., by attaching
a �nger to the smartphone camera. Therefore, signal processing methods
and algorithms for long-term arrhythmia screening in photoplethymogram
signals are required.

2. There is lack of annotated databases for testing of photoplethysmogram-
based arrhythmia detection algorithms. Therefore, a photoplethysmogram
model capable of simulating both normal rhythm and various types of ar-
rhythmia, namely, premature contractions and atrial �brillation, has been
developed. The model makes use of rhythm-based information obtained ei-
ther from annotated electrocardiogram signals or rhythm simulators aimed
generate simulated photoplethysmogram signals. The obtained results
show that simulated signals visually resemble the real photoplethysmogram
signals with the root mean square error between both normalized simulated
and real signals not exceeding 0.1. Currently, this is the only photoplethys-
mogram model intended for arrhythmia simulation so far. The model is
well-suited for the development and assessment of photoplethysmogram-
based arrhythmia detection algorithms.

3. An algorithm for the detection of premature ventricular contractions rely-
ing solely on photoplethysmogram-based feature analysis has been devel-
oped. Characteristics of the proposed algorithm, such as the normalization
of extracted rhythm-based features according to an estimated normal sinus
rhythm, false alarm suppression with artifact detection and the use of neu-
ral network classi�er for beat classi�cation into normal and premature ones
allows the detection of not only single premature ventricular contractions
but also for the rhythm of bigeminy. When compared to already known
algorithms, the proposed one shows substantial performance improvement,
e.g., Se � 94.4�3.1 % and Sp � 99.98�0.01 % with simulated signals and
up to Se � 92.8 % and Sp � 99.9 % on clinical signals, respectively, and
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could be used for continuous ambulatory screening of premature ventricu-
lar contractions. The online version is implemented as an application for
Android OS, thus making it suitable for wearable systems, such as PPG-
capable smartwatches or smartphones.

4. A photoplethysmogram-based method combining heart rhythm analysis
and signal quality assessment algorithms for reliable atrial �brillation de-
tection has been developed. The detection part relies on a modi�ed and
improved low-complexity atrial �brillation detector, adapted for photo-
plethysmogram-based features. The photoplethysmogram quality assess-
ment part employs correlation technique for distinguishing photoplethys-
mogram pulses between normal and noise-corrupted ones. The results show
that atrial �brillation detection supplemented by signal quality assessment
allows achieving hight detection sensitivity, e.g., nearly 90 %, up to 20 dB
SNR with simulated signals composed of Type 1 pulses and up to 98.6 %
with clinical signals. Exceptionally high speci�city is possible even at rel-
atively low SNRs, e.g., nearly 100 % at 0�10dB with simulated signals and
up to 99.9 % with clinical signals. The proposed algorithm has a potential
to be applied for continuous ambulatory screening of atrial �brillation. The
algorithm is suitable for the implementation in the wearable systems, e.g.,
smartwatches or smartphones, therefore, the online version is implemented
as an Android OS application.
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Appendix A1 DATABASES AND SIGNALS

Tables A1.1 and A1.2 present the signals included from the MIMIC and
UQSVD databases, respectively, together with the corresponding rhythm types.

Table A1.1. Signals from MIMIC database for model evaluation. Numbers correspond
to the record names in the database. One pulse is extracted from each of the 56 records.

Record AF PB SR Record AF PB SR

055 N N Y 404 Y Y Y

208 Y N N 410 Y Y Y

209 Y N N 411 N Y Y

210 Y N N 414 N N Y

211 N Y Y 417 N Y N

212 N Y Y 427 Y N Y

213 N Y Y 430 N N Y

218 N Y Y 437 N N Y

219 N Y Y 438 N Y Y

220 N Y Y 439 Y Y Y

221 N Y Y 442 N Y Y

224 N N Y 443 Y Y Y

225 N Y Y 444 N N Y

226 N Y Y 446 N Y Y

230 N Y Y 449 N N Y

231 N Y Y 451 N Y Y

237 N N Y 452 N N Y

240 N Y N 453 N N Y

248 N Y N 456 N Y Y

252 N Y N 466 N Y Y

253 Y N N 471 Y Y Y

254 N N Y 472 Y Y Y

260 Y N N 474 N Y Y

276 N Y Y 476 N Y Y

281 Y Y N 477 N Y Y

284 N Y Y 482 N Y Y

401 N Y Y 484 N Y Y

403 N Y N 485 Y Y N

* Y/N stands for YES/NO
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Table A1.2. Signals from UQVSD database for model evaluation. One pulse is ex-
tracted from each of the 32 records.

Record AF PB SR Record AF PB SR

case01 N N Y case17 N Y Y

case02 N Y Y case18 N Y Y

case03 Y Y Y case19 N Y Y

case04 N Y Y case20 N Y Y

case05 N Y Y case21 N Y Y

case06 N Y Y case22 Y N N

case07 N Y Y case23 N N Y

case08 N N Y case24 N N Y

case09 N N Y case25 N Y Y

case10 N N Y case26 N Y Y

case11 N Y Y case27 N Y Y

case12 N Y Y case28 N N Y

case13 N Y Y case29 N Y Y

case14 N Y Y case30 N N Y

case15 N N Y case31 N N Y

case16 N N Y case32 N Y Y

* Y/N stands for YES/NO
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Appendix A2 INITIAL PPG PULSE FITTING PARAMETERS

Table A2.1 provides the initial PPG pulse �tting parameters for various
pulse modeling approaches.

Table A2.1. Initial sets of parameters used for PPG pulse modeling.

Log-normal,
Gaussian

Gamma,
Gaussian

Gaussian Log-normal

p lb ub p lb ub p lb ub p lb ub

a0 0.6 0.1 2.0 9.0 0.0 15.0 1.0 0.1 2.0 1.8 0.1 3.0

a1 0.6 0.1 2.0 0.3 0.0 2.0 0.6 0.1 2.0 0.6 0.1 3.0

a2 0.6 0.1 2.0 0.15 0.0 2.0 0.6 0.08 2.0 0.6 0.1 2.0

α � � � 25.0 0.0 35.0 � � � � � �

β � � � 11.0 0.0 15.0 � � � � � �

σ0 0.2 0.1 1.0 � � � � � � 0.3 0.1 0.5

σ1 � � � � � � � � � 0.3 0.1 1.0

σ2 � � � � � � � � � 0.3 0.1 1.0

b0 1.0 0.1 1.0 � � � 0.4 0.1 2.0 1.0 0.1 1.0

b1 0.6 0.1 2.0 0.8 0.0 2.0 0.5 0.1 2.0 1.0 0.1 1.0

b2 0.9 0.1 2.0 0.9 0.0 2.0 0.2 0.2 2.0 1.3 0.1 2.0

τ0 -4.0 -5.0 -3.5 -3.9 -5.0 -3.5 -1.0 -3.0 2.0 -4.4 -4.5 -3.0

τ1 -1.4 -1.8 2.0 -0.5 -3.0 2.0 -0.4 -2.0 2.0 -3.4 -3.5 2.0

τ2 0.3 -2.0 2.0 0.9 0.0 3.0 0.9 -1.5 2.0 -2.5 -2.0 0.5

h0 0.0 -0.5 2.0 0.0 -2.0 1.0 0.0 -2.0 1.0 0.0 -2.0 1.0

h1 0.0 -2.0 2.0 0.0 -2.0 1.0 0.0 -2.0 1.0 0.0 -2.0 1.0

h2 0.0 -2.0 2.0 0.0 -2.0 1.0 0.0 -2.0 1.0 0.0 -2.0 1.0
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Appendix A3 IMPLEMENTATIONS OF DEVELOPED

ALGORITHMS IN SMART DEVICES

Figure A3.1 shows a screenshot of the application running on the smart-
phone. The PPG segment with the correctly detected PVCs during the episode
of bigeminy is shown in a chart on the top of the application window. The
bottom chart shows the normalized peak-to-peak intervals. The sliding panel
on the right side provides important information about the number of detected
PVCs and the PVC burden, determined by the percentage of PVC-related beats
compared to a total number of beats.

Fig. A3.1. Screenshot of the Android application with the implemented PVC
detection algorithm. The application window shows the detected PVCs during a

bigeminy episode, as well as other heart rhythm-related parameters. Note that this
particular signal is characterized by a very high heart rhythm (220 bpm) outside the

episode of multiple PVCs.
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Figure A3.2 shows a screenshot of the application running on the smart-
phone. The PPG segment is shown in a chart on the top of the application
window. The bottom chart shows the estimated SQI of the present segment.
The sliding panel on the right side provides important information about the
number of the detected AF beats and the AF burden determined by the per-
centage of AF-related beats compared to the total number of beats.

Fig. A3.2. Screenshot of the Android application with the implemented AF
detection algorithm. The application window shows the PPG signal during AF,
together with the estimated SQI and other heart rhythm-related parameters.
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